分析 利用橢圓的定義,求得|PF1|=3,|PF2|=1,則△PF2F1是直角三角形,即可求得△PF1F2的面積.
解答 解:∵$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{2}$=1,焦點在x軸上,則a=2,由橢圓定義:|PF1|+|PF2|=4,丨F1F2丨=2c=2$\sqrt{2}$,
∵|PF1|-|PF2|=2,可得|PF1|=3,|PF2|=1,
由12+(2$\sqrt{2}$)2=9,
∴△PF2F1是直角三角形,
△PF1F2的面積$\frac{1}{2}$|PF2|×|F1F2|=$\frac{1}{2}$×1×2$\sqrt{2}$=$\sqrt{2}$.
故答案為:$\sqrt{2}$.
點評 本題考查橢圓的標準方程,橢圓的定義,考查計算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
用水量(噸) | [0,10] | (10,20] | (20,30] | (30,40] | (40,50] | 合計 |
頻數(shù) | 200 | 400 | 200 | b | 100 | 1000 |
頻率 | 0.2 | a | 0.2 | 0.1 | c | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,$\frac{3}{2}$+$\sqrt{2}$] | B. | (-∞,3] | C. | (-∞,6] | D. | (-∞,3+2$\sqrt{2}$] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 64π | B. | 65π | C. | 66π | D. | 128π |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com