已知拋物線,點(diǎn),過(guò)的直線交拋物線于兩點(diǎn).
(1)若,拋物線的焦點(diǎn)與中點(diǎn)的連線垂直于軸,求直線的方程;
(2)設(shè)為小于零的常數(shù),點(diǎn)關(guān)于軸的對(duì)稱(chēng)點(diǎn)為,求證:直線過(guò)定點(diǎn)
(1);(2)參考解析
解析試題分析:(1)由題意可得通過(guò)假設(shè)直線方程聯(lián)立拋物線方程,消去y可得一個(gè)一元二次方程,通過(guò)韋達(dá)定理寫(xiě)出根與系數(shù)的關(guān)系.由中點(diǎn)的橫坐標(biāo)等于拋物線的焦點(diǎn)坐標(biāo)的橫坐標(biāo)可解出直線的斜率k的值.即可求出直線方程.
(2)由直線方程與拋物線的方程聯(lián)立可得,關(guān)于點(diǎn)A,B的坐標(biāo)關(guān)系,從而得到的坐標(biāo),寫(xiě)出直線B的方程.由于其中含有A,B的坐標(biāo)值,通過(guò)整理成為的形式即可知道,直線恒過(guò)定點(diǎn).
試題解析:(1)解:由已知,拋物線的焦點(diǎn)坐標(biāo)為.
設(shè)過(guò)點(diǎn)的直線的方程為,
由 得.
設(shè),,則.
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/a1/b/1rs4u3.png" style="vertical-align:middle;" />與中點(diǎn)的連線垂直于軸,所以,即.
解得 ,.
所以,直線的方程為.
(2)證明:設(shè)直線的方程為.
由 得,
則,且,即,且.
.
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/4d/b/1osqg4.png" style="vertical-align:middle;" />關(guān)于軸對(duì)稱(chēng),所以,直線,
又 ,,所以,
所以 .
因?yàn)?,又同號(hào),,
所以 ,
所以直線的方程為,
所以,直線恒過(guò)定點(diǎn).
考點(diǎn):1.直線與拋物線的關(guān)系.2.對(duì)稱(chēng)性的問(wèn)題.3.解方程的能力.4.過(guò)定點(diǎn)的問(wèn)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,已知橢圓C:+y2=1,A、B是四條直線x=±2,y=±1所圍成的兩個(gè)頂點(diǎn).
(1)設(shè)P是橢圓C上任意一點(diǎn),若=m+n,求證:動(dòng)點(diǎn)Q(m,n)在定圓上運(yùn)動(dòng),并求出定圓的方程;
(2)若M、N是橢圓C上兩上動(dòng)點(diǎn),且直線OM、ON的斜率之積等于直線OA、OB的斜率之積,試探求△OMN的面積是否為定值,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓的離心率為,且經(jīng)過(guò)點(diǎn). 過(guò)它的兩個(gè)焦點(diǎn),分別作直線與,交橢圓于A、B兩點(diǎn),交橢圓于C、D兩點(diǎn),且.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)求四邊形的面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知△的兩個(gè)頂點(diǎn)的坐標(biāo)分別是,,且所在直線的斜率之積等于.
(1)求頂點(diǎn)的軌跡的方程,并判斷軌跡為何種圓錐曲線;
(2)當(dāng)時(shí),過(guò)點(diǎn)的直線交曲線于兩點(diǎn),設(shè)點(diǎn)關(guān)于軸的對(duì)稱(chēng)點(diǎn)為(不重合), 試問(wèn):直線與軸的交點(diǎn)是否是定點(diǎn)?若是,求出定點(diǎn),若不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)橢圓的方程為 ,斜率為1的直線不經(jīng)過(guò)原點(diǎn),而且與橢圓相交于兩點(diǎn),為線段的中點(diǎn).
(1)問(wèn):直線與能否垂直?若能,求之間滿足的關(guān)系式;若不能,說(shuō)明理由;
(2)已知為的中點(diǎn),且點(diǎn)在橢圓上.若,求之間滿足的關(guān)系式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,是橢圓的左、右頂點(diǎn),橢圓的離心率為,右準(zhǔn)線的方程為.
(1)求橢圓方程;
(2)設(shè)是橢圓上異于的一點(diǎn),直線交于點(diǎn),以為直徑的圓記為. ①若恰好是橢圓的上頂點(diǎn),求截直線所得的弦長(zhǎng);
②設(shè)與直線交于點(diǎn),試證明:直線與軸的交點(diǎn)為定點(diǎn),并求該定點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(1)已知點(diǎn)和,過(guò)點(diǎn)的直線與過(guò)點(diǎn)的直線相交于點(diǎn),設(shè)直線的斜率為,直線的斜率為,如果,求點(diǎn)的軌跡;
(2)用正弦定理證明三角形外角平分線定理:如果在中,的外角平分線與邊的延長(zhǎng)線相交于點(diǎn),則.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖所示,已知橢圓的兩個(gè)焦點(diǎn)分別為、,且到直線的距離等于橢圓的短軸長(zhǎng).
(Ⅰ) 求橢圓的方程;
(Ⅱ) 若圓的圓心為(),且經(jīng)過(guò)、,是橢圓上的動(dòng)點(diǎn)且在圓外,過(guò)作圓的切線,切點(diǎn)為,當(dāng)的最大值為時(shí),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知離心率的橢圓一個(gè)焦點(diǎn)為.
(1)求橢圓的方程;
(2) 若斜率為1的直線交橢圓于兩點(diǎn),且,求直線方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com