分析 (Ⅰ)利用平方,轉(zhuǎn)化求解sinxcosx,通過sinx-cosx的符號,利用平方轉(zhuǎn)化求解即可;
(Ⅱ)利用地一問的結(jié)果,求出正弦函數(shù)以及余弦函數(shù)的值,然后求解即可.
解答 解:(Ⅰ)因?yàn)?sinx+cosx=\frac{1}{5}$,
所以$1+2sinxcosx=\frac{1}{25}$,$2sinxcosx=-\frac{24}{25}$,…(3分)
因?yàn)?-\frac{π}{2}<x<0$,所以sinx<0,cosx>0,
所以sinx-cosx<0,${(sinx-cosx)^2}=1-2sinxcosx=\frac{49}{25}$,
所以$sinx-cosx=-\frac{7}{5}$.…(6分)
(Ⅱ)由(Ⅰ)知,$\left\{\begin{array}{l}sinx+cosx=\frac{1}{5}\\ sinx-cosx=-\frac{7}{5}\end{array}\right.$,解得$sinx=-\frac{3}{5}$,$cosx=\frac{4}{5}$,$tanx=-\frac{3}{4}$.…(9分)
4sinxcosx-cos2x=$\frac{{4sinxcosx-{{cos}^2}x}}{{{{sin}^2}x+{{cos}^2}x}}$=$\frac{4tanx-1}{{{{tan}^2}x+1}}$=$-\frac{64}{25}$.…(12分)
點(diǎn)評 本題考查三角函數(shù)化簡求值,考查計(jì)算能力.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-5,-10) | B. | (-3,-6) | C. | (-4,-8) | D. | (-2,-4) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=tanx | B. | y=cos(-x) | C. | $y=-sin({\frac{π}{2}-x})$ | D. | y=|tanx| |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(x)=|sin(2x-$\frac{π}{4}$)| | B. | f(x)=sin2x+cos2x | C. | f(x)=cos(2x+$\frac{3π}{4}$) | D. | f(x)=-tan(x+$\frac{π}{8}$) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com