11.已知向量$|{\overrightarrow a}|=3,|{\overrightarrow b}|=2$,且$\overrightarrow a,\overrightarrow b$的夾角為120°,求:
(1)求$({2\overrightarrow a+\overrightarrow b})•({\overrightarrow a-2\overrightarrow b})$的值;
(2)求$|{2\overrightarrow a+\overrightarrow b}|$的值.

分析 (1)先求出$\overrightarrow{a}$•$\overrightarrow$=-3,再根據(jù)向量的數(shù)量積計算即可,
(2)先平方,再根據(jù)向量的數(shù)量積運算即可.

解答 解:(1)∵|$\overrightarrow{a}$|=3,|$\overrightarrow$|=2,且$\overrightarrow a,\overrightarrow b$的夾角為120°,
∴$\overrightarrow{a}$•$\overrightarrow$=|$\overrightarrow{a}$|•|$\overrightarrow$|•cos120°=3×2×(-$\frac{1}{2}$)=-3,
∴$({2\overrightarrow a+\overrightarrow b})•({\overrightarrow a-2\overrightarrow b})$=2|$\overrightarrow{a}$|2-3$\overrightarrow{a}$$•\overrightarrow$-2|$\overrightarrow$|2=2×9-3×(-3)-2×4=19
(2)|2$\overrightarrow{a}$+$\overrightarrow$|2=4|$\overrightarrow{a}$|2+4$\overrightarrow{a}$$•\overrightarrow$+|$\overrightarrow$|2=36-12+4=28,
∴|2$\overrightarrow{a}$+$\overrightarrow$|2=2$\sqrt{7}$.

點評 本題考查向量的數(shù)量積的運算,向量的夾角公式,向量的模,考查計算能力,屬于基礎題

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

1.已知雙曲線x2+$\frac{y^2}{{{b^2}-4}}$=1的焦點到漸近線的距離為2,則雙曲線的漸近線方程為( 。
A.y=±$\frac{1}{2}$xB.y=±$\sqrt{3}$xC.y=±2xD.y=±$\frac{{\sqrt{3}}}{3}$x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.《九章算術》是我國古代數(shù)學成就的杰出代表作,其中《方田》章給出計算弧田面積所用的經(jīng)驗公式為:弧田面積=$\frac{1}{2}×$(弦×矢+矢2),弧田(如圖)由圓弧和其所對弦圍城,公式中“弦”指圓弧所對弦長,“矢”等于半徑長與圓心到弦的距離之差,現(xiàn)有圓心角$\frac{2π}{3}$,半徑為6米的弧田,按照上述經(jīng)驗公式計算所得弧田面積約是($\sqrt{3}≈1.73$)( 。
A.16平方米B.18平方米C.20平方米D.25平方米

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.已知-$\frac{π}{2}$<x<0,sinx+cosx=$\frac{1}{5}$.
(Ⅰ)求sinx-cosx的值;
(Ⅱ)求4sinxcosx-cos2x的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.(1+x)3+(1+x)4+…+(1+x)50的展開式中的x3的系數(shù)為47600.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.如圖所示,在塔底B測得山頂C的仰角為60°,在山頂測得塔頂A的仰角為45°,已知塔高AB=20米,則山高DC=10(3+$\sqrt{3}$)米.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.在平面直角坐標系中,已知橢圓兩焦點坐標為F1(-2$\sqrt{2}$,0),F(xiàn)2(2$\sqrt{2}$,0),橢圓C上的點到右焦點距離最小值為3-2$\sqrt{2}$.
(1)求橢圓C的方程;
(2)設斜率為-2的直線交曲線C于E、F兩點,求線段EF的中點N的軌跡方程;
(3)設經(jīng)過點F1(-2$\sqrt{2}$,0)的直線與曲線C相交所得的弦為線段PQ,求△PQO的面積的最大值(O是坐標原點).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.為了解某地高中生的身高情況,研究小組在該地高中生中隨機抽出30名高中生的身高統(tǒng)計成如圖所示的莖葉圖(單位:cm).
若身高在175cm以上(包括175cm)定義為“高個子”,身高在175cm以下(不包括175cm)定義為“非高個子”.
(1)求眾數(shù)和平均數(shù)
(2)如果用分層抽樣的方法從“高個子”和“非高個子”中抽取5人,再從這5人中選2人,那么至少有1人是“高個子”的概率是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.已知$\overrightarrow{a}$、$\overrightarrow$是兩個不共線向量,設$\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OB}$=λ$\overrightarrow$,$\overrightarrow{OC}$=2$\overrightarrow{a}$+$\overrightarrow$,若A,B,C三點共線,則實數(shù)λ的值等于( 。
A.1B.2C.-1D.-2

查看答案和解析>>

同步練習冊答案