15.已知復(fù)數(shù)z滿足z+i-3=3-i,則z等于( 。
A.0B.2iC.6D.6-2i

分析 直接利用負(fù)數(shù)的加減法化簡求解即可.

解答 解:復(fù)數(shù)z滿足z+i-3=3-i,
z=6-2i,
故選:D.

點(diǎn)評(píng) 本題考查復(fù)數(shù)的基本概念,復(fù)數(shù)的加減法的運(yùn)算,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.北京某高校在2016年的自主招生考試成績中隨機(jī)抽取100名學(xué)生的筆試成績,按成績分組,得到的頻率分布表如表所示.
組號(hào)分組頻數(shù)頻率
第1組[160,165)50.050
第2組[165,170)n0.350
第3組[170,175)30p
第4組[175,180)200.200
第5組[180,185]100.100
合計(jì)1001.000
(1)求頻率分布表中n,p的值,并補(bǔ)充完整相應(yīng)的頻率分布直方圖;
(2)為了能選拔出最優(yōu)秀的學(xué)生,高校決定在筆試成績高的第4、5組中用分層抽樣的方法抽取6名學(xué)生進(jìn)入第二輪面試,則第4、5組每組各抽取多少名學(xué)生進(jìn)入第二輪面試?
(3)在(2)的前提下,學(xué)校決定從6名學(xué)生中隨機(jī)抽取2名學(xué)生接受甲考官的面試,求第4組至多有1名學(xué)生被甲考官面試的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知過點(diǎn)($\sqrt{2}$,$\sqrt{5}$)的雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的離心率為$\sqrt{6}$,則該雙曲線的實(shí)軸長為( 。
A.2B.2$\sqrt{2}$C.4D.2$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.設(shè)復(fù)數(shù)z=1+i(i是虛數(shù)單位),則|${\frac{2}{z}$+z|=( 。
A.2B.$\sqrt{5}$C.3D.2$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.應(yīng)用簡單隨機(jī)抽樣,從n個(gè)個(gè)體中抽取一個(gè)容量為10的樣本.若第二次抽取時(shí),余下的每個(gè)個(gè)體被抽到的概率為$\frac{1}{3}$,則在整個(gè)抽樣過程中,每個(gè)個(gè)體被抽到的概率為$\frac{5}{14}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知函數(shù)y=$\frac{|{x}^{2}-1|}{x-1}$的圖象與函數(shù)y=kx-1的圖象有且只有一個(gè)交點(diǎn),則實(shí)數(shù)k的取值范圍是{k|k≥1或k<-1}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.若隨機(jī)變量X的概率分布如表,則表中a的值為(  )
X1234
P0.20.30.4a
A.1B.0.1C.0.3D.0.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知函數(shù)f(x)是定義域?yàn)镽的偶函數(shù),且f(x+2)=f(x),若f(x)在[-1,0]上是減函數(shù),記a=f(log0.52),b=f(log24),c=f(20.5),則(  )
A.a>b>cB.b>c>aC.a>c>bD.b>a>c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖,已知線段AC為⊙O的直徑,PA為⊙O的切線,切點(diǎn)為A,B為⊙O上一點(diǎn),且BC∥PO.
(I)求證:PB為⊙O的切線
(Ⅱ)若⊙O的半徑為1,PA=3,求BC的長.

查看答案和解析>>

同步練習(xí)冊(cè)答案