8.已知函數(shù)f(x)=x2,g(x)=-1nx,g'(x)為g(x)的導(dǎo)函數(shù).若存在直線l同為函數(shù)f(x)與g'(x)的切線,則直線l的斜率為( 。
A.$2\sqrt{5}-4$B.2C.4D.$\frac{1}{2}$

分析 分別設(shè)出直線l與兩個(gè)函數(shù)所對(duì)應(yīng)曲線的切點(diǎn),求出切線方程,由兩切線系數(shù)相等列式求出切點(diǎn)橫坐標(biāo),則答案可求.

解答 解:由g(x)=-1nx,得g'(x)=-$\frac{1}{x}$,
設(shè)直線l與f(x)的切點(diǎn)為(${x}_{1},{{x}_{1}}^{2}$),則f′(x1)=2x1,
∴直線l的方程為y-${{x}_{1}}^{2}=2{x}_{1}(x-{x}_{1})$,即$y=2{x}_{1}x-{{x}_{1}}^{2}$;
再設(shè)l與g'(x)的切點(diǎn)為(${x}_{2},-\frac{1}{{x}_{2}}$),則$g″({x}_{2})=\frac{1}{{{x}_{2}}^{2}}$,
∴直線l的方程為$y+\frac{1}{{x}_{2}}=\frac{1}{{{x}_{2}}^{2}}(x-{x}_{2})$,即$y=\frac{1}{{{x}_{2}}^{2}}x-\frac{2}{{x}_{2}}$.
∴$\left\{\begin{array}{l}{2{x}_{1}=\frac{1}{{{x}_{2}}^{2}}}\\{{{x}_{1}}^{2}=\frac{2}{{x}_{2}}}\end{array}\right.$,解得x1=2.
∴直線l的斜率為2x1=4.
故選:C.

點(diǎn)評(píng) 本題考查利用導(dǎo)數(shù)研究過(guò)去線上某點(diǎn)處的切線方程,函數(shù)在曲線上某點(diǎn)處的導(dǎo)數(shù),就是函數(shù)在該點(diǎn)處的導(dǎo)數(shù)值,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.《九章算術(shù)》是我國(guó)古代內(nèi)容極為豐富的數(shù)學(xué)名著,書(shū)中有如下問(wèn)題:“今有五人五錢(qián),令上二人所得與下三人等.問(wèn)各得幾何?”其意思為:“現(xiàn)有甲乙丙丁戊五人依次差值等額分五錢(qián),要使甲乙兩人所得的錢(qián)與丙丁戊三人所得的錢(qián)相等,問(wèn)每人各得多少錢(qián)?”根據(jù)題意,乙得( 。
A.$\frac{2}{3}$錢(qián)B.$\frac{5}{6}$錢(qián)C.1錢(qián)D.$\frac{7}{6}$錢(qián)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.在平行四邊形ABCD中,AB=4,AD=2,∠A=$\frac{π}{3}$,M為DC的中點(diǎn),N為平面ABCD內(nèi)一點(diǎn),若|$\overrightarrow{AB}$-$\overrightarrow{NB}$|=|$\overrightarrow{AM}$-$\overrightarrow{AN}$|,則$\overrightarrow{AM}$•$\overrightarrow{AN}$=(  )
A.16B.12C.8D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.如圖所示,為了測(cè)量A、B處島嶼的距離,小明在D處觀測(cè),A、B分別在D處的北偏西15°、北偏東45°方向,再往正東方向行駛40海里至C處,觀測(cè)B在C處的正北方向,A在C處的北偏西60°方向,則A、B兩處島嶼的距離為20$\sqrt{6}$海里.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知函數(shù)f(x)=1n(x+2)+1n(x-2),則f(x)是( 。
A.奇函數(shù)B.偶函數(shù)
C.既是奇函數(shù)又是偶函數(shù)D.非奇非偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.設(shè)集合A={x|x>2},B={x|x2-4x<0},則A∩B=( 。
A.(4,+∞)B.(2,4)C.(0,4)D.(0,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.函數(shù)f(x)=$\frac{1}{2}$sin(ωx+φ)(ω>0,|φ|<$\frac{π}{2}$)的部分圖象如圖所示,則f(x)的單調(diào)遞增區(qū)間為( 。
A.$(-\frac{1}{24}+2kπ,\frac{5}{24}+2kπ)$,(k∈Z)B.$(-\frac{1}{12}+\frac{k}{2},\frac{5}{12}+\frac{k}{2})$,(k∈Z)
C.$(-\frac{1}{12}+2kπ,\frac{1}{3}+2kπ)$,(k∈Z)D.$(-\frac{1}{24}+\frac{k}{2},\frac{5}{24}+\frac{k}{2})$,(k∈Z)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知函數(shù)f(x)=x3-x+1,則曲線y=f(x)在點(diǎn)(0,1)處的切線與兩坐標(biāo)軸所圍成的三角形的面積為( 。
A.$\frac{1}{6}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.設(shè)函數(shù)f(x)滿(mǎn)足2x2f(x)+x3f'(x)=ex,f(2)=$\frac{e^2}{8}$,則x∈[2,+∞)時(shí),f(x)的最小值為( 。
A.$\frac{e^2}{2}$B.$\frac{{3{e^2}}}{2}$C.$\frac{e^2}{4}$D.$\frac{e^2}{8}$

查看答案和解析>>

同步練習(xí)冊(cè)答案