分析 分別在△ACD和△BCD中利用正弦定理計算AD,BD,再在△ABD中利用余弦定理計算AB.
解答 解:連接AB,
由題意可知CD=40,∠ADC=105°,∠BDC=45°,∠BCD=90°,∠ACD=30°,
∴∠CAD=45°,∠ADB=60°,
在△ACD中,由正弦定理得$\frac{AD}{sin30°}=\frac{40}{sin45°}$,∴AD=20$\sqrt{2}$,
在Rt△BCD中,
∵∠BDC=45°,∠BCD=90°,
∴BD=$\sqrt{2}$CD=40$\sqrt{2}$.
在△ABD中,由余弦定理得AB=$\sqrt{800+3200-2×20\sqrt{2}×40\sqrt{2}×cos60°}$=20$\sqrt{6}$.
故答案為:$20\sqrt{6}$.
點評 本題考查了解三角形的應(yīng)用,合理選擇三角形,利用正余弦定理計算是關(guān)鍵,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | B. | C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2 | B. | -2 | C. | $\frac{1}{2}$ | D. | $-\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {2} | B. | {1,2} | C. | {-2,1,2} | D. | {-2,-1,0} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $2\sqrt{5}-4$ | B. | 2 | C. | 4 | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com