5.棱長為2的正方體的頂點都在同一個球面上,則球的表面積是( 。
A.B.12πC.16πD.20π

分析 由棱長為2的正方體的八個頂點都在同一個球面上,知球半徑R=$\sqrt{3}$,由此能求出球的表面積.

解答 解:∵棱長為2的正方體的八個頂點都在同一個球面上,
∴球半徑R=$\sqrt{3}$,
∴球的表面積S=4π($\sqrt{3}$)2=12π.
故選B.

點評 本題考查球的表面積的求法,考查學生的計算能力,求出球的半徑是關鍵.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

15.設等差數(shù)列{an}與等比數(shù)列{bn}滿足:0<a1=b1<a5=b5,則下述結(jié)論一定成立的是( 。
A.a3<b3B.a3>b3C.a6<b6D.a6>b6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.已知三點A(1,0)、B(2,-3)、C(-2,a),向量$\overrightarrow{BA}$與$\overrightarrow{BC}$的夾角和直線BA與BC的夾角的關系.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.函數(shù)y=lg(x+1)的定義域是( 。
A.[-1,+∞)B.(-1,+∞)C.(0,+∞)D.[0,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.集合{-1,1}共有4個子集.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.點P在直徑為AB=1的半圓上移動,過點P作圓的切線PT,且PT=1,∠PAB=α,問α為何值時,四邊形ABTP的面積最大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.若方程sin2x+2sinx+a=0有解,則實數(shù)a的取值范圍是( 。
A.[-3,1]B.(-∞,1]C.[1,+∞)D.[-1,1]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.設$(f(x,y))=({\begin{array}{l}xy1\end{array}})({\begin{array}{l}1&0&1\\ 0&1&1\\ 1&1&{-2}\end{array}})({\begin{array}{l}x\\ y\\ 1\end{array}})$,點A(x1,y1)滿足方程f(x,y)=0,點B(-1,-1).
(1)計算$|{\overrightarrow{AB}}$|; 
(2)O為坐標原點,當$\overrightarrow{AO}$⊥$\overrightarrow{BO}$時,計算$|{\overrightarrow{AO}}$|; 
(3)求$|{\overrightarrow{OA}}$|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.如圖已知橢圓C:$\frac{{x}^{2}}{4}$+y2=1,以橢圓的左頂點T為圓心作圓T:(x+2)2+y2=r2(r>0).設圓T與橢圓C交于點M與點N.
(1)求$\overrightarrow{TM}$•$\overrightarrow{TN}$的最小值;
(2)設點P是橢圓C上異于M,N的任意一點,且直線MP,NP分別與x軸交于點R,S,O為坐標原點,求證:丨OR丨•丨OS丨為定值.

查看答案和解析>>

同步練習冊答案