2.設(shè)函數(shù)f(x)=xea-x+bx,曲線y=f(x)在點(diǎn)(2,f(2))處的切線方程為y=(e-1)x+4.
(1)求a,b的值;    
(2)求f(x)的單調(diào)區(qū)間.

分析 (1)求函數(shù)的導(dǎo)數(shù),根據(jù)導(dǎo)數(shù)的幾何意義求出函數(shù)的切線斜率以及f(2),建立方程組關(guān)系即可求a,b的值;
(2)求函數(shù)的導(dǎo)數(shù),利用函數(shù)單調(diào)性和導(dǎo)數(shù)之間的關(guān)系即可求f(x)的單調(diào)區(qū)間.

解答 解:(1)∵y=f(x)在點(diǎn)(2,f(2))處的切線方程為y=(e-1)x+4,
∴當(dāng)x=2時(shí),y=2(e-1)+4=2e+2,即f(2)=2e+2,
同時(shí)f′(2)=e-1,
∵f(x)=xea-x+bx,
∴f′(x)=ea-x-xea-x+b,
則$\left\{\begin{array}{l}{f(2)=2{e}^{a-2}+2b=2e+2}\\{f′(2)={e}^{a-2}-2{e}^{a-2}+b=e-1}\end{array}\right.$,
即a=2,b=e;
(2)∵a=2,b=e;
∴f(x)=xe2-x+ex,
∴f′(x)=e2-x-xe2-x+e=(1-x)e2-x+e,
f″(x)=-e2-x-(1-x)e2-x=(x-2)e2-x,
由f″(x)>0得x>2,由f″(x)<0得x<2,
即當(dāng)x=2時(shí),f′(x)取得極小值f′(2)=(1-2)e2-2+e=e-1>0,
∴f′(x)>0恒成立,
即函數(shù)f(x)是增函數(shù),
即f(x)的單調(diào)區(qū)間是(-∞,+∞).

點(diǎn)評 本題主要考查導(dǎo)數(shù)的應(yīng)用,根據(jù)導(dǎo)數(shù)的幾何意義,結(jié)合切線斜率建立方程關(guān)系以及利用函數(shù)單調(diào)性和導(dǎo)數(shù)之間的關(guān)系是解決本題的關(guān)鍵.綜合性較強(qiáng).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知一個(gè)分段函數(shù)可利用函數(shù)$S(x)=\left\{\begin{array}{l}1\;,\;x≥0\\ 0\;,\;x<0\end{array}\right.$來表示,例如要表示一個(gè)分段函數(shù)$g(x)=\left\{\begin{array}{l}x\;,\;x≥2\\-x\;,\;x<2\end{array}\right.$,可將函數(shù)g(x)表示為g(x)=xS(x-2)+(-x)S(2-x).現(xiàn)有一個(gè)函數(shù)f(x)=(-x2+4x-3)S(x-1)+(x2-1)S(1-x).
(1)求函數(shù)f(x)在區(qū)間[0,4]上的最大值與最小值;
(2)若關(guān)于x的不等式f(x)≤kx對任意x∈[0,+∞)都成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.在直角坐標(biāo)平面內(nèi),曲線|x-1|+|x+1|+|y|=4圍成的圖形面積為( 。
A.12B.16C.20D.24

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知a=0.40.4,b=1.20.4,c=log20.4,則a,b,c的大小關(guān)系為(  )
A.c<a<bB.c<b<aC.a<b<cD.a<c<b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知函數(shù)$f(x)=\left\{\begin{array}{l}x+1(x<1)\\-x+3(x≥1)\end{array}\right.$,則$f[f(\frac{5}{2})]$=( 。
A.$\frac{1}{2}$B.$\frac{5}{2}$C.$\frac{9}{2}$D.$\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知命題p:?x0∈R,x0-2>0,命題q:?x∈R,$\sqrt{x}$<x,則下列說法中正確的是( 。
A.命題p∨q是假命題B.命題p∧q是真命題
C.命題p∧(¬q)是真命題D.命題p∨(¬q)是假命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖所示,直三棱柱ABC-A1B1C1中,CA=CB=1,∠BCA=90°,棱AA1=2,M、N分別是A1B1、A1A的中點(diǎn).
(1)求證:A1B⊥C1M.
(2)求cos<$\overrightarrow{B{A}_{1}}$,$\overrightarrow{C{B}_{1}}$>的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知集合M={x|x2-2x-8≤0},集合N={x|lgx≥0},則M∩N=( 。
A.{x|x≥4}B.{x|1≤x≤4}C.{x|x≥1}D.{x|x≥-2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=(x+a)lnx,g(x)=$\frac{x^2}{e^x}$.已知曲線y=f(x)在點(diǎn)(1,f(1))處的切線與直線2x-y=0平行.
(1)求a的值;
(2)證明:方程f(x)=g(x)在(1,2)內(nèi)有且只有一個(gè)實(shí)根.

查看答案和解析>>

同步練習(xí)冊答案