【題目】已知.
(1)討論的單調性;
(2)若,且在區(qū)間上的最小值為,求的值.
【答案】(1)當時,在上單調遞增;當時,在上單調遞增,在上單調遞減;(2).
【解析】
(1)根據(jù)函數(shù)解析式可得定義域和導函數(shù);分別在和兩種情況下討論導函數(shù)的符號,從而得到函數(shù)的單調性;(2)首先確定解析式和;通過可知;分別在、和三種情況下確定在上的單調性,從而得到最小值的位置,利用最小值構造方程求得結果.
(1)由題意得:定義域為:;
當時,在上恒成立 在上單調遞增
當時,令,解得:
時,;時,
在上單調遞增;在上單調遞減
綜上所述:當時,在上單調遞增;當時,在上單調遞增,在上單調遞減
(2)
則
令,解得:
①當,即時,在上恒成立
在上單調遞增 ,解得:,舍去
②當,即時,
時,;時,
在上單調遞減;在上單調遞增
,解得:,符合題意
③當,即時,在上恒成立
在上單調遞減
,解得:,舍去
綜上所述:
科目:高中數(shù)學 來源: 題型:
【題目】定義一:對于一個函數(shù),若存在兩條距離為的直線和,使得時,恒成立,則稱函數(shù)在內有一個寬度為的通道.
定義二:若一個函數(shù)對于任意給定的正數(shù),都存在一個實數(shù),使得函數(shù)在內有一個寬度為的通道,則稱在正無窮處有永恒通道.
下列函數(shù)①;②;③;④;⑤. 其中在正無窮處有永恒通道的函數(shù)序號是 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線y2=2px(p>0)的焦點為F,A(x1,y1),B(x2,y2)是過F的直線與拋物線的兩個交點,求證:
(1)y1y2=-p2,;(2)為定值;
(3)以AB為直徑的圓與拋物線的準線相切.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線: 的焦點與橢圓: 的一個焦點重合,點在拋物線上,過焦點的直線交拋物線于、兩點.
(Ⅰ)求拋物線的方程以及的值;
(Ⅱ)記拋物線的準線與軸交于點,試問是否存在常數(shù),使得且都成立?若存在,求出實數(shù)的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設是兩條不同的直線,是兩個不同的平面,有下列正確命題的序號是________.
(1)若m∥,n∥,則m∥n, (2)若則
(3)若,且,則; (4)若,,則
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的焦距為,且C與y軸交于兩點.
(1)求橢圓C的標準方程;
(2)設P點是橢圓C上的一個動點且在y軸的右側,直線PA,PB與直線交于M,N兩點.若以MN為直徑的圓與x軸交于E,F(xiàn)兩點,求P點橫坐標的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4—5;不等式選講.
已知函數(shù).
(1)若的解集非空,求實數(shù)的取值范圍;
(2)若正數(shù)滿足, 為(1)中m可取到的最大值,求證: .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,是圓內一個定點,是圓上任意一點.線段的垂直平分線和半徑相交于點.
(Ⅰ)當點在圓上運動時,點的軌跡是什么曲線?并求出其軌跡方程;
(Ⅱ)過點作直線與曲線交于、兩點,點關于原點的對稱點為,求的面積的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com