【題目】已知.

(1)討論的單調性;

(2)若,且在區(qū)間上的最小值為,求的值.

【答案】(1)當時,上單調遞增;當時,上單調遞增,在上單調遞減;(2).

【解析】

1)根據(jù)函數(shù)解析式可得定義域和導函數(shù);分別在兩種情況下討論導函數(shù)的符號,從而得到函數(shù)的單調性;(2)首先確定解析式和;通過可知;分別在、三種情況下確定上的單調性,從而得到最小值的位置,利用最小值構造方程求得結果.

1)由題意得:定義域為:

時,上恒成立 上單調遞增

時,令,解得:

時,時,

上單調遞增;在上單調遞減

綜上所述:當時,上單調遞增;當時,上單調遞增,在上單調遞減

2

,解得:

①當,即時,上恒成立

上單調遞增 ,解得:,舍去

②當,即時,

時,時,

上單調遞減;在上單調遞增

,解得:,符合題意

③當,即時,上恒成立

上單調遞減

,解得:,舍去

綜上所述:

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】定義一:對于一個函數(shù),若存在兩條距離為的直線,使得時,恒成立,則稱函數(shù)內有一個寬度為的通道.

定義二:若一個函數(shù)對于任意給定的正數(shù),都存在一個實數(shù),使得函數(shù)內有一個寬度為的通道,則稱在正無窮處有永恒通道.

下列函數(shù);;. 其中在正無窮處有永恒通道的函數(shù)序號是 .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線y2=2px(p>0)的焦點為FA(x1,y1),B(x2y2)是過F的直線與拋物線的兩個交點,求證:

(1)y1y2=-p2;(2)為定值;

(3)以AB為直徑的圓與拋物線的準線相切.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線 的焦點與橢圓 的一個焦點重合,點在拋物線上,過焦點的直線交拋物線于兩點.

(Ⅰ)求拋物線的方程以及的值;

(Ⅱ)記拋物線的準線軸交于點,試問是否存在常數(shù),使得都成立?若存在,求出實數(shù)的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)當時,求的單調區(qū)間;

2)若函數(shù)處取得極大值,求實數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】是兩條不同的直線,是兩個不同的平面,有下列正確命題的序號是________

(1)若m,n,則mn, (2)若

(3)若,,則; (4)若,則

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的焦距為,且C與y軸交于兩點.

(1)求橢圓C的標準方程;

(2)設P點是橢圓C上的一個動點且在y軸的右側,直線PA,PB與直線交于M,N兩點.若以MN為直徑的圓與x軸交于E,F(xiàn)兩點,求P點橫坐標的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4—5;不等式選講.

已知函數(shù)

(1)的解集非空,求實數(shù)的取值范圍;

(2)若正數(shù)滿足, 為(1)中m可取到的最大值,求證:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,是圓內一個定點,是圓上任意一點.線段的垂直平分線和半徑相交于點.

(Ⅰ)當點在圓上運動時,點的軌跡是什么曲線?并求出其軌跡方程;

(Ⅱ)過點作直線與曲線交于、兩點,點關于原點的對稱點為,求的面積的最大值.

查看答案和解析>>

同步練習冊答案