【題目】某單位建造一間背面靠墻的小房,地面面積為12m2 , 房屋正面每平方米造價為1200元,房屋側(cè)面每平方米造價為800元,屋頂?shù)脑靸r為5800元,如果墻高為3m,且不計房屋背面和地面的費用,設房屋正面地面的邊長為xm,房屋的總造價為y元.
(1)求y用x表示的函數(shù)關(guān)系式;
(2)怎樣設計房屋能使總造價最低?最低總造價是多少?
【答案】
(1)解:如圖所示,設底面的長為xm,寬ym,
則y= m.
設房屋總造價為f(x),
由題意可得f(x)=3x1200+3× ×800×2+5800=3600(x+ )+5800(x>0)
(2)解:f(x)=3600(x+ )+5800≥28800+5800=34600,
當且僅當x=4時取等號.
答:當?shù)酌娴拈L寬分別為4m,3m時,可使房屋總造價最低,總造價是34600元.
【解析】(1)設底面的長為xm,寬ym,則y= m.設房屋總造價為f(x),由題意可得f(x)=3x1200+3× ×800×2+5800=3600(x+ )+5800(x>0);(2)利用基本不等式即可得出結(jié)論.
【考點精析】解答此題的關(guān)鍵在于理解基本不等式在最值問題中的應用的相關(guān)知識,掌握用基本不等式求最值時(積定和最小,和定積最大),要注意滿足三個條件“一正、二定、三相等”.
科目:高中數(shù)學 來源: 題型:
【題目】已知甲、乙兩車由同一起點同時出發(fā),并沿同一路線(假定為直線)行駛.甲車、乙車的速度曲線分別為V甲和V乙(如圖所示).那么對于圖中給定的t0和t1 , 下列判斷中一定正確的是( )
A.在t1時刻,甲車在乙車前面
B.t1時刻后,甲車在乙車后面
C.在t0時刻,兩車的位置相同
D.t0時刻后,乙車在甲車前面
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)若函數(shù)在上是減函數(shù),求實數(shù)的取值范圍;
(2)當時,分別求函數(shù)的最小值和的最大值,并證明當時, 成立;
(3)令,當時,判斷函數(shù)有幾個不同的零點并證明.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù) .
(1)當時,
①求曲線在點處的切線方程;
②求函數(shù)在區(qū)間上的值域.
(2)對于任意,都有,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓O:x2+y2=r2(r>0),點P為圓O上任意一點(不在坐標軸上),過點P作傾斜角互補的兩條直線分別交圓O于另一點A,B.
(1)當直線PA的斜率為2時,
①若點A的坐標為(﹣ ,﹣ ),求點P的坐標;
②若點P的橫坐標為2,且PA=2PB,求r的值;
(2)當點P在圓O上移動時,求證:直線OP與AB的斜率之積為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知A、B、C為三個銳角,且A+B+C=π,若向量 =(2sinA﹣2,cosA+sinA)與向量 =(cosA﹣sinA,1+sinA)是共線向量. (Ⅰ)求角A;
(Ⅱ)求函數(shù)y=2sin2B+cos 的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】定義平面向量之間的一種運算“⊙”如下:對任意的 ,令 ,下面說法錯誤的是( )
A.若 與 共線,則 ⊙ =0
B. ⊙ = ⊙
C.對任意的λ∈R,有 ⊙ = ⊙ )
D.( ⊙ )2+( )2=| |2| |2
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設點P、Q分別在直線3x﹣y+5=0和3x﹣y﹣13=0上運動,線段PQ中點為M(x0 , y0),且x0+y0>4,則 的取值范圍為 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知f(x)=lnx,g(x)= x2+mx+ (m<0),直線l與函數(shù)f(x)的圖象相切,切點的橫坐標為1,且直線l與函數(shù)g(x)的圖象也相切.
(1)求直線l的方程及實數(shù)m的值;
(2)若h(x)=f(x)﹣x+3,求函數(shù)h(x)的最大值;
(3)當0<b<a時,求證:f(a+b)﹣f(2a)< .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com