【題目】已知橢圓的離心率為,為橢圓的左、右焦點(diǎn),過右焦點(diǎn)的直線與橢圓交于兩點(diǎn),且的周長為.

(Ⅰ)求橢圓的方程;

(Ⅱ)若點(diǎn)A是第一象限內(nèi)橢圓上一點(diǎn),且在軸上的正投影為右焦點(diǎn),過點(diǎn)作直線分別交橢圓于兩點(diǎn),當(dāng)直線的傾斜角互補(bǔ)時(shí),試問:直線的斜率是否為定值;若是,請求出其定值;否則,請說明理由.

【答案】(Ⅰ);(Ⅱ).

【解析】

(Ⅰ)由題意求出a,b,即可得到橢圓的方程;

(Ⅱ)依題意知,點(diǎn),設(shè),直線的方程為:,聯(lián)立方程可得利用韋達(dá)定理表示G點(diǎn)坐標(biāo),同理可得: ,),從而得到結(jié)果.

(Ⅰ)由題設(shè)知

由橢圓的定義知:的周長為,解得.

因此,所以橢圓的方程為.

(Ⅱ)證明:依題意知,點(diǎn),設(shè)

直線的方程為:

聯(lián)立,得,

, 即,

,

又直線的傾斜角互補(bǔ),則直線的斜率為

同理可得: ,),

因此,直線的斜率為為定值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,直線的傾斜角為,且經(jīng)過點(diǎn).以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,直線,從原點(diǎn)O作射線交于點(diǎn)M,點(diǎn)N為射線OM上的點(diǎn),滿足,記點(diǎn)N的軌跡為曲線C.

(Ⅰ)求出直線的參數(shù)方程和曲線C的直角坐標(biāo)方程;

(Ⅱ)設(shè)直線與曲線C交于P,Q兩點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長為8的菱形中,,將沿折起,使點(diǎn)到達(dá)的位置,且二面角.

(1)求異面直線所成角的大;

(2)若點(diǎn)中點(diǎn),求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線E焦點(diǎn)F,過點(diǎn)F且斜率為2的直線與拋物線交于A、B兩點(diǎn),且

(1)求拋物線E的方程;

(2)設(shè)O是坐標(biāo)原點(diǎn),PQ是拋物線E上分別位于x軸兩側(cè)的兩個(gè)動(dòng)點(diǎn),且

①證明:直線PQ必過定點(diǎn),并求出定點(diǎn)G的坐標(biāo);

②過GPQ的垂線交拋物線于C,D兩點(diǎn),求四邊形PCQD面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直三棱柱中,, 為線段的中點(diǎn),為線段上一動(dòng)點(diǎn)(異于點(diǎn)),為線段上一動(dòng)點(diǎn),且.

(Ⅰ)求證:平面平面;

(Ⅱ)若,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】正三角形的邊長為,將它沿高折疊,使點(diǎn)與點(diǎn)間的距離為,則四面體外接球的表面積為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的圖象在點(diǎn)處的切線與直線平行.

(Ⅰ)求函數(shù)的極值;

(Ⅱ)若對于,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】[選修4—5:參數(shù)方程選講]

在直角坐標(biāo)系xoy中,曲線的參數(shù)方程是(t是參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程是

(1)求曲線的普通方程和曲線的直角坐標(biāo)方程;

(2)若兩曲線交點(diǎn)為A、B,求

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中為自然對數(shù)的底數(shù).

(1)若函數(shù)在區(qū)間上是單調(diào)函數(shù),試求實(shí)數(shù)的取值范圍;

(2)已知函數(shù),且,若函數(shù)在區(qū)間上恰有3個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案