分析 (Ⅰ)直接利用等比數(shù)列的定義結(jié)合已知數(shù)列遞推式證明數(shù)列{bn}是等比數(shù)列;
(Ⅱ)由(Ⅰ)求出a2n,得到a2n-1,進(jìn)一步求出S2n,再由S2n-1=S2n-a2n得到S2n-1,由函數(shù)的單調(diào)性求出滿足Sn>0的所有正整數(shù)n.
解答 (Ⅰ)證明:設(shè)$_{n}={a}_{2n}-\frac{3}{2}$,
∵$\frac{_{n+1}}{_{n}}=\frac{{a}_{2n+2}-\frac{3}{2}}{{a}_{2n}-\frac{3}{2}}=\frac{\frac{1}{3}{a}_{2n+1}+(2n+1)-\frac{3}{2}}{{a}_{2n}-\frac{3}{2}}$=$\frac{\frac{1}{3}({a}_{2n}-6n)+(2n+1)-\frac{3}{2}}{{a}_{2n}-\frac{3}{2}}$=$\frac{\frac{1}{3}{a}_{2n}-\frac{1}{2}}{{a}_{2n}-\frac{3}{2}}=\frac{1}{3}$.
∴數(shù)列{bn}是以${a}_{2}-\frac{3}{2}=-\frac{1}{6}$為首項(xiàng),以$\frac{1}{3}$為公比的等比數(shù)列;
(Ⅱ)解:由(Ⅰ)得,$_{n}={a}_{2n}-\frac{3}{2}=-\frac{1}{6}•(\frac{1}{3})^{n-1}=-\frac{1}{2}(\frac{1}{3})^{n}$,即${a}_{2n}=-\frac{1}{2}•(\frac{1}{3})^{n}+\frac{3}{2}$,
由${a}_{2n}=\frac{1}{3}{a}_{2n-1}+(2n-1)$,得${a}_{2n-1}=3{a}_{2n}-3(2n-1)=-\frac{1}{3}(\frac{1}{3})^{n-1}-6n+\frac{15}{2}$.
∴${a}_{2n-1}+{a}_{2n}=-\frac{1}{2}[(\frac{1}{3})^{n-1}+(\frac{1}{3})^{n}]-6n+9=-2$$•(\frac{1}{3})^{n}-6n+9$.
S2n=(a1+a2)+(a3+a4)+…+(a2n-1+a2n)
=$-2[\frac{1}{3}+(\frac{1}{3})^{2}+…+(\frac{1}{3})^{n}]-6(1+2+…+n)+9n$
=$-2•\frac{\frac{1}{3}[1-(\frac{1}{3})^{n}]}{1-\frac{1}{3}}-6•\frac{n(n+1)}{2}+9n$=$(\frac{1}{3})^{n}-1-3{n}^{2}+6n=(\frac{1}{3})^{n}-3(n-1)^{2}+2$.
顯然,當(dāng)n∈N*時(shí),{S2n}單調(diào)遞減,
又當(dāng)n=1時(shí),${S}_{2}=\frac{7}{3}$>0,當(dāng)n=2時(shí),${S}_{4}=-\frac{8}{9}$<0,
∴當(dāng)n≥2時(shí),S2n<0;
${S}_{2n-1}={S}_{2n}-{a}_{2n}=\frac{3}{2}•(\frac{1}{3})^{n}-\frac{5}{2}-3{n}^{2}+6n$,
同理當(dāng)且僅當(dāng)n=1時(shí),S2n-1>0.
綜上,滿足Sn>0的所有正整數(shù)n為1和2.
點(diǎn)評(píng) 本題考查數(shù)列遞推式,考查了數(shù)列的分組求和與等比數(shù)列的前n項(xiàng)和,考查數(shù)列的函數(shù)特性,是中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | n | B. | 2n-1 | C. | n-2 | D. | n-1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{15}$ | B. | $\frac{\sqrt{15}}{2}$ | C. | $\frac{\sqrt{15}}{6}$ | D. | $\frac{\sqrt{15}}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $(0,\frac{1}{3})$ | B. | $(\frac{1}{3},\frac{1}{2})$ | C. | $(\frac{1}{2},\frac{2}{3})$ | D. | $(\frac{2}{3},1)$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com