11.已知數(shù)列{an}中,a1=1,an+1=$\left\{\begin{array}{l}{\frac{1}{3}{a}_{n}+n,n為奇數(shù)}\\{{a}_{n}-3n,n為偶數(shù)}\end{array}\right.$
(Ⅰ)設(shè)bn=a2n-$\frac{3}{2}$,求證:數(shù)列{bn}是等比數(shù)列;
(Ⅱ)設(shè)Sn=$\sum_{k=t}^{n}{a}_{k}$,求滿足Sn>0的所有正整數(shù)n.

分析 (Ⅰ)直接利用等比數(shù)列的定義結(jié)合已知數(shù)列遞推式證明數(shù)列{bn}是等比數(shù)列;
(Ⅱ)由(Ⅰ)求出a2n,得到a2n-1,進(jìn)一步求出S2n,再由S2n-1=S2n-a2n得到S2n-1,由函數(shù)的單調(diào)性求出滿足Sn>0的所有正整數(shù)n.

解答 (Ⅰ)證明:設(shè)$_{n}={a}_{2n}-\frac{3}{2}$,
∵$\frac{_{n+1}}{_{n}}=\frac{{a}_{2n+2}-\frac{3}{2}}{{a}_{2n}-\frac{3}{2}}=\frac{\frac{1}{3}{a}_{2n+1}+(2n+1)-\frac{3}{2}}{{a}_{2n}-\frac{3}{2}}$=$\frac{\frac{1}{3}({a}_{2n}-6n)+(2n+1)-\frac{3}{2}}{{a}_{2n}-\frac{3}{2}}$=$\frac{\frac{1}{3}{a}_{2n}-\frac{1}{2}}{{a}_{2n}-\frac{3}{2}}=\frac{1}{3}$.
∴數(shù)列{bn}是以${a}_{2}-\frac{3}{2}=-\frac{1}{6}$為首項(xiàng),以$\frac{1}{3}$為公比的等比數(shù)列;
(Ⅱ)解:由(Ⅰ)得,$_{n}={a}_{2n}-\frac{3}{2}=-\frac{1}{6}•(\frac{1}{3})^{n-1}=-\frac{1}{2}(\frac{1}{3})^{n}$,即${a}_{2n}=-\frac{1}{2}•(\frac{1}{3})^{n}+\frac{3}{2}$,
由${a}_{2n}=\frac{1}{3}{a}_{2n-1}+(2n-1)$,得${a}_{2n-1}=3{a}_{2n}-3(2n-1)=-\frac{1}{3}(\frac{1}{3})^{n-1}-6n+\frac{15}{2}$.
∴${a}_{2n-1}+{a}_{2n}=-\frac{1}{2}[(\frac{1}{3})^{n-1}+(\frac{1}{3})^{n}]-6n+9=-2$$•(\frac{1}{3})^{n}-6n+9$.
S2n=(a1+a2)+(a3+a4)+…+(a2n-1+a2n
=$-2[\frac{1}{3}+(\frac{1}{3})^{2}+…+(\frac{1}{3})^{n}]-6(1+2+…+n)+9n$
=$-2•\frac{\frac{1}{3}[1-(\frac{1}{3})^{n}]}{1-\frac{1}{3}}-6•\frac{n(n+1)}{2}+9n$=$(\frac{1}{3})^{n}-1-3{n}^{2}+6n=(\frac{1}{3})^{n}-3(n-1)^{2}+2$.
顯然,當(dāng)n∈N*時(shí),{S2n}單調(diào)遞減,
又當(dāng)n=1時(shí),${S}_{2}=\frac{7}{3}$>0,當(dāng)n=2時(shí),${S}_{4}=-\frac{8}{9}$<0,
∴當(dāng)n≥2時(shí),S2n<0;
${S}_{2n-1}={S}_{2n}-{a}_{2n}=\frac{3}{2}•(\frac{1}{3})^{n}-\frac{5}{2}-3{n}^{2}+6n$,
同理當(dāng)且僅當(dāng)n=1時(shí),S2n-1>0.
綜上,滿足Sn>0的所有正整數(shù)n為1和2.

點(diǎn)評(píng) 本題考查數(shù)列遞推式,考查了數(shù)列的分組求和與等比數(shù)列的前n項(xiàng)和,考查數(shù)列的函數(shù)特性,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知復(fù)數(shù)z滿足z(1+i)=2,則|z|=$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知點(diǎn)A(1,0),B(3,0),若直線y=kx+1上存在點(diǎn)P,滿足PA⊥PB,則k的取值范圍是$[-\frac{4}{3},0]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知數(shù)列{an}的前n項(xiàng)和Sn=n2-n,正項(xiàng)等比數(shù)列{bn}中,b2=a3,bn+3bn-1=4bn2(n≥2,n∈N+),則log2bn=( 。
A.nB.2n-1C.n-2D.n-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知△ABC內(nèi)角A,B,C的對(duì)邊分別是a,b,c,若cosB=$\frac{1}{4}$,b=2,sinC=2sinA,則△ABC的面積為( 。
A.$\sqrt{15}$B.$\frac{\sqrt{15}}{2}$C.$\frac{\sqrt{15}}{6}$D.$\frac{\sqrt{15}}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{1}{2}$,連接橢圓的四個(gè)頂點(diǎn)得到的菱形的面積為4$\sqrt{3}$.
(1)求橢圓C的方程;
(2)已知O為坐標(biāo)原點(diǎn),點(diǎn)P是圓x2+y2=2上的點(diǎn),過P作圓的切線交橢圓于M,N兩點(diǎn),求△OMN面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.圖中,能表示函數(shù)y=f(x)的圖象的是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知f(x)=$\frac{{-{2^x}+n}}{{{2^{x+1}}+m}}$是定義在R上的奇函數(shù).
(1)求n,m的值;
(2)若對(duì)任意的c∈(-1,1),不等式f(4c-2c+1)+f(2•4c-k)<0恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知關(guān)于x的方程${({\frac{1}{2}})^x}-{x^{\frac{1}{3}}}=0$,那么在下列區(qū)間中含有方程的根的是( 。
A.$(0,\frac{1}{3})$B.$(\frac{1}{3},\frac{1}{2})$C.$(\frac{1}{2},\frac{2}{3})$D.$(\frac{2}{3},1)$

查看答案和解析>>

同步練習(xí)冊(cè)答案