分析 (1)求出圓心與半徑,即可求圓C的方程;
(2)設(shè)點P在圓C上,求出高的最大值,弦AB的長,即可求△PAB的面積的最大值.
解答 解:(1)取弦AB的中點M,則M的坐標為(1,3),
∵A(-1,2),B(2,4)∴${k_{AB}}=\frac{4-2}{3-(-1)}=\frac{1}{2}$,∴kCM=-2,
∴直線CM的方程為:y-3=-2(x-1),即2x+y-5=0,…(2分)
∵圓心在直線x+3y-15=0上,∴$\left\{{\begin{array}{l}{2x+y-5=0}\\{x+3y-15=0}\end{array}}\right.$,∴$\left\{{\begin{array}{l}{x=0}\\{y=5}\end{array}}\right.$,即C(0,5),…(4分)
∴半徑$r=\sqrt{{{(0+1)}^2}+{{(5-2)}^2}}=\sqrt{10}$,∴圓C的方程為:x2+(y-5)2=10;…(6分)
(2)設(shè)△PAB的高為h,
由(1)可知${k_{AB}}=\frac{1}{2}$,∴直線AB的方程為:$y-4=\frac{1}{2}(x-3)$,即x-2y+5=0,…(7分)∵$|{CM}|=\frac{{|{-2×5+5}|}}{{\sqrt{{1^2}+{2^2}}}}=\sqrt{5}$,…(9分)
∴${h_{max}}=|{CM}|+r=\sqrt{5}+\sqrt{10}$,…(10分)
又$|{AB}|=\sqrt{{{(3+1)}^2}+{{(4-2)}^2}}=2\sqrt{5}$,…(12分)
∴$S{\;}_{max}=\frac{1}{2}×2\sqrt{5}×(\sqrt{5}+\sqrt{10})=5+5\sqrt{2}$,…(13分)
點評 本題考查圓的方程,考查三角形面積的計算,考查學(xué)生分析解決問題的能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 64 | B. | 72 | C. | 384 | D. | 432 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
積極參加班級工作 | 不積極參加班級工作 | 合計 | |
學(xué)習(xí)積極性高 | 18 | 7 | 25 |
學(xué)習(xí)積極性不高 | 6 | 19 | 25 |
合計 | 24 | 26 | 50 |
P(K2≥k0) | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $tan\frac{13π}{4}>tan\frac{13π}{3}$ | B. | $sin\frac{π}{5}>cos\frac{π}{5}$ | C. | $cos\frac{3π}{5}<cos(-\frac{2π}{5})$ | D. | cos 55°>tan 35° |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (x+1)2+y2=2 | B. | x2+(y+2)2=2 | ||
C. | (x+3)2+y2=2 | D. | (x+1)2+y2=2或(x+3)2+y2=2 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com