A. | 90° | B. | 75° | C. | 135° | D. | 105° |
分析 由已知利用正弦定理可得:a+c=$\sqrt{2}$b,兩邊平方可得:a2+c2-b2=b2-2ac,又利用基本不等式可求b2≥2ac,可求B為最大角,進(jìn)而利用余弦定理可求cosB≥0,根據(jù)余弦函數(shù)的圖象可求B的最大值.
解答 解:∵sinA+sinC=$\sqrt{2}$sinB,
∴由正弦定理可得:a+c=$\sqrt{2}$b,
∴兩邊平方可得:a2+c2+2ac=2b2,可得:a2+c2-b2=b2-2ac,
∵a2+c2=2b2-2ac≥2ac,可得:b2≥2ac,當(dāng)且僅當(dāng)a=c時(shí)等號(hào)成立,
∴B為最大角,由余弦定理可得:cosB=$\frac{{a}^{2}+{c}^{2}-^{2}}{2ac}$=$\frac{^{2}-2ac}{2ac}$≥$\frac{2ac-2ac}{2ac}$=0,
當(dāng)且僅當(dāng)a=c時(shí)等號(hào)成立,
由B∈(0°,180°),
可求Bmax=90°.
故選:A.
點(diǎn)評(píng) 本題主要考查了正弦定理,基本不等式,余弦定理,余弦函數(shù)的圖象和性質(zhì)在解三角形中的應(yīng)用,考查了轉(zhuǎn)化思想,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | B. | C. | D. |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com