11.曲線y=alnx(a>0)在x=1處的切線與兩坐標軸所圍成的三角形的面積為4,則a的值為( 。
A.4B.-4C.8D.-8

分析 求出切線方程,然后求解坐標軸上的截距,求解三角形的面積即可.

解答 解:曲線y=alnx(a>0),
$f'(x)=\frac{a}{x}$,所以切線的斜率k=f'(1)=a,所以切線的方程為y=a(x-1),
所以切線與兩坐標軸的交點坐標分別為A(1,0)和B(0,-a).
${S_{△AOB}}=\frac{1}{2}a=4$,解得a=8.
故選:C.

點評 本題考查曲線的切線方程的求法,三角形的面積的求法,考查計算能力.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

1.由代數(shù)式的乘法法則類比推導向量的數(shù)量積的運算法則:
①“mn=nm”類比得到“$\overrightarrow{a}$•$\overrightarrow$=$\overrightarrow$•$\overrightarrow{a}$”;
②“(m+n)t=mt+nt”類比得到“($\overrightarrow{a}$+$\overrightarrow$)•$\overrightarrow{c}$=$\overrightarrow{a}$•$\overrightarrow{c}$+$\overrightarrow$•$\overrightarrow{c}$”;
③“t≠0,mt=nt⇒m=n”類比得到“$\overrightarrow{c}$≠0,$\overrightarrow{a}$•$\overrightarrow{c}$=$\overrightarrow$•$\overrightarrow{c}$⇒$\overrightarrow{a}$=$\overrightarrow$”;
④“|m•n|=|m|•|n|”類比得到“|$\overrightarrow{a}$•$\overrightarrow$|=|$\overrightarrow{a}$|•|$\overrightarrow$|”;
⑤“(m•n)t=m(n•t)”類比得到“($\overrightarrow{a}$•$\overrightarrow$)•$\overrightarrow{c}$=$\overrightarrow{a}$($\overrightarrow$•$\overrightarrow{c}$)”;
⑥“$\frac{ac}{bc}$=$\frac{a}$”類比得到$\frac{\overrightarrow{a}•\overrightarrow{c}}{\overrightarrow•\overrightarrow{c}}$=$\frac{\overrightarrow{a}}{\overrightarrow}$.以上的式子中,類比得到的結(jié)論正確的是①②.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.關于函數(shù)f(x)=4sin(2x+$\frac{π}{3}$)(x∈R),有下列說法:
①函數(shù)y=f(x)的圖象向右平移$\frac{π}{3}$個單位后得到的圖象關于原點對稱;
②函數(shù)y=f(x)是以2π為最小正周期的周期函數(shù);
③函數(shù)y=f(x)的圖象關于點$({-\frac{π}{6},0})$對稱;
④函數(shù)y=f(x)的圖象關于直線x=$\frac{π}{6}$對稱.
其中正確的是③.(填上所有你認為正確的序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.在平面直角坐標系xoy中,點P到$({0,-\sqrt{3}}),({0,\sqrt{3}})$兩點的距離之和等于4,若點P的軌跡為C.
(1)求C的方程;
(2)如果經(jīng)過點(0,1)的直線l交C于點A,B,且$\overrightarrow{OA}•\overrightarrow{AB}=0$,求該直線的方程及$|{\overrightarrow{AB}}|$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.數(shù)列{an}的前n項和為Sn,若Sn=2n-1(n∈N+),則a2017的值為( 。
A.2B.3C.2017D.3033

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.若函數(shù)f(x)=$\frac{1}{3}{x^3}+a{x^2}$+bx+c有極值點x1,x2(x1<x2),且f(x1)=x1,則關于x的方程[f(x)]2+2af(x)+b=0的不同實數(shù)根的個數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知等差數(shù)列{an}中,a1=-60,a17=-12.
(1)該數(shù)列第幾項起為正?
(2)前多少項和最?求數(shù)列{an}的前n項和Sn的最小值
(3)設Tn=|a1|+|a2|+|a3|+…+|an|

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.已知a>0,求證:$\sqrt{{a^2}+\frac{1}{a^2}}$-$\sqrt{2}$≥a+$\frac{1}{a}-2$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知 b=a3+$\frac{1}{1+a}$,a∈[0,1].  證明:
(1)b≥1-a+a2
(2)$\frac{3}{4}$<b≤$\frac{3}{2}$.

查看答案和解析>>

同步練習冊答案