18.復(fù)數(shù)$z=\frac{3-2i}{(2+i)(1-i)}$在復(fù)平面內(nèi)的對應(yīng)點位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

分析 利用復(fù)數(shù)代數(shù)形式的乘除運算化簡,求出z的坐標(biāo)得答案.

解答 解:∵$z=\frac{3-2i}{(2+i)(1-i)}$=$\frac{3-2i}{3-i}=\frac{(3-2i)(3+i)}{(3-i)(3+i)}=\frac{11-3i}{10}=\frac{11}{10}-\frac{3}{10}i$,
∴z在復(fù)平面內(nèi)的對應(yīng)點的坐標(biāo)為($\frac{11}{10},-\frac{3}{10}$),位于第四象限.
故選:D.

點評 本題考查復(fù)數(shù)代數(shù)形式的乘除運算,考查了復(fù)數(shù)的代數(shù)表示法及其幾何意義,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知集合M={x∈R|$\frac{1-x}{x}≤0$},N={x∈R|y=ln(x-1)},則M∩N( 。
A.B.{x|x≥1}C.{x|x>1}D.{x|x≥1或x<0}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知O,A,B是平面上不共線的三點,直線AB上有一點C,滿足2$\overrightarrow{AC}$+$\overrightarrow{CB}$=$\overrightarrow{0}$,
(1)用$\overrightarrow{OA}$,$\overrightarrow{OB}$表示$\overrightarrow{OC}$;
(2)若點D是OB的中點,用向量方法證明四邊形OCAD是梯形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.直線l經(jīng)過點P(5,5),其斜率為k,直線l與圓x2+y2=25相交,交點分別為A,B.
(1)若AB=4$\sqrt{5}$,求k的值;
(2)若AB<2$\sqrt{7}$,求k的取值范圍;
(3)若OA⊥OB(O為坐標(biāo)原點),求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.設(shè)x、y滿足不等式組$\left\{\begin{array}{l}{x-y+1≥0}\\{x+y-1≥0}\\{x≤2}\end{array}\right.$,則x2+y2的最小值為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.如圖,在矩形ABCD中,AB=3,過點A向∠BAD所在區(qū)域等可能任作一條射線AP,已知事件“射線AP與線段BC有公共點”發(fā)生的概率為$\frac{1}{3}$,則BC邊的長為$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.f(x)=x2+lnx,則f(x)在x=1處的切線方程為3x-y-2=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.如圖,M、N分別是AB、AC的一個三等分點,且$\overrightarrow{MN}$=λ($\overrightarrow{AC}$-$\overrightarrow{AB}$)成立,則λ=( 。
A.$\frac{1}{2}$B.±$\frac{1}{3}$C.$\frac{2}{3}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知f(x)=$\frac{{e}^{x}}{1+a{x}^{2}}$,其中a為正實數(shù).
(1)當(dāng)a=$\frac{4}{3}$時,求f(x)的極值點,并指出是極大值點還是極小值點;
(2)若f(x)為實數(shù)集R上的單調(diào)函數(shù),求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案