已知函數(shù)f(x)=4x3-3x2cosθ+
3
16
cosθ其中x∈R,θ為參數(shù),且0≤θ≤2π.
(1)當(dāng)cosθ=0時(shí),判斷函數(shù)f(x)是否有極值;
(2)要使函數(shù)f(x)的極小值大于零,求參數(shù)θ的取值范圍;
(3)若對(duì)(2)中所求的取值范圍內(nèi)的任意參數(shù)θ,函數(shù)f(x)在區(qū)間(2a-1,a)(其中a<1)內(nèi)都是增函數(shù),求實(shí)數(shù)a的取值范圍.
考點(diǎn):利用導(dǎo)數(shù)研究函數(shù)的極值,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性
專題:計(jì)算題,導(dǎo)數(shù)的綜合應(yīng)用
分析:(1)當(dāng)cosθ=0時(shí),求出f(x),求出導(dǎo)數(shù),即可判斷單調(diào)性和極值;
(2)求出導(dǎo)數(shù),求出單調(diào)區(qū)間,判斷極小值,解大于0的不等式,即可得到;
(3)由(2)知f(x)在區(qū)間(-∞,0]與[
cosθ
2
,+∞)
內(nèi)都是增函數(shù),由區(qū)間的包含關(guān)系得到a的不等式,解出即可.
解答: 解:(1)當(dāng)cosθ=0時(shí),f(x)=4x3,f′(x)=12x2≥0,則f(x)在(-∞,+∞)內(nèi)是增函數(shù),故無極值.
(2)f′(x)=12x2-6xcosθ,f(x)=0,得x1=0,x2=
cosθ
2

當(dāng)cosθ>0時(shí)容易判斷f(x)在(-∞,0],[
cosθ
2
,+∞)
上是增函數(shù),在[0,
cosθ
2
]
上是減函數(shù),
故f(x)在x=
cosθ
2
處取得極小值f(
cosθ
2
)=-
1
4
cos3θ+
3
16
cosθ

f(
cosθ
2
)>0
,即-
1
4
cos3θ+
3
16
cosθ
>0,可得0<cosθ<
3
2
,由于0≤θ≤2π
,
π
6
<θ<
π
2
2
<θ<
11π
6

同理,可知當(dāng)cosθ<0時(shí),f(x)在x=0處取極小值f(0)=
3
16
cosθ>0,即cosθ>0,與cosθ<0矛盾,
所以當(dāng)cosθ<0時(shí),f(x)的極小值不會(huì)大于零.
綜上,要使函數(shù)f(x)在R上的極小值大于零,參數(shù)θ的取值范圍為(
π
6
,
π
2
)∪(
2
,
11π
6
)

(3)由(2)知函數(shù)f(x)在區(qū)間(-∞,0]與[
cosθ
2
,+∞)
內(nèi)都是增函數(shù),由題設(shè):
函數(shù)在(2a-1,a)內(nèi)是增函數(shù),則a需滿足不等式a≤0或2a-1≥
cosθ
2

(其中θ∈(
π
6
π
2
)∪(
2
,
11π
6
)
時(shí),0<cosθ<
3
2
)從而可以解得a≤0或
4+
3
8
≤a<1,即a的取值范圍是(-∞,0]∪[
4+
3
8
,1)
點(diǎn)評(píng):本題考查導(dǎo)數(shù)的綜合應(yīng)用:求單調(diào)區(qū)間和求極值,考查三角不等式的運(yùn)算求解能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)A=
x+1
x+2
,B=
x+3
x+4
,則A與B的大小關(guān)系是( 。
A、A<B
B、A>B
C、僅有x>0,A<B
D、以上結(jié)論都不成立

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
1
3
x3-
a
2
x2+bx+c,曲線y=f(x)在點(diǎn)P(0,f(0))處的切線方程為y=1
(1)確定b,c的值;
(2)若過點(diǎn)(0,2)可作曲線y=f(x)的三條不同切線,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|3≤3x≤27},B={x|log2x>1}.
(1)分別求A∩B,(∁RA)∪(∁RB);
(2)已知集合C={x|a<x<a2+1},若C⊆A,求滿足條件的實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(α)=
(1+cos2α)cos(
3
2
π-α)
2cos(π+α)

(1)設(shè)A是△ABC的內(nèi)角,且為鈍角,求f(A)的最小值;
(2)設(shè)A,B是銳角△ABC的內(nèi)角,且A+B=
12
,f(A)=1,BC=2,求△ABC 的三個(gè)內(nèi)角的大小和AC邊的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|x2-2x-3≤0,x∈R},B={x|m-1≤x≤m+1,x∈R,m∈R}
(1)若A∩B=[1,3],求實(shí)數(shù)m的值;
(2)若A⊆∁RB,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知復(fù)數(shù)z=(m2+m-2)+(m2-2m)i
(1)實(shí)數(shù)m取什么值時(shí),z是實(shí)數(shù);
(2)實(shí)數(shù)m取什么值時(shí),與z對(duì)應(yīng)的點(diǎn)在第四象限.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)全集I=R,已知集合A={x|x2-2x-15≤0},集合B={x|y=log2(x2-10x+24)}.
(Ⅰ)求A∩B,A∪(∁IB);
(Ⅱ)記集合M=A∪(∁IB),集合N={x|a-1≤x≤5-a,a∈R},若M∩N=M,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對(duì)某中學(xué)高二年級(jí)學(xué)生是愛好體育還是愛好文娛進(jìn)行調(diào)查,共調(diào)查了40人,所得2×2列聯(lián)表如下:
愛好類型
性別

愛 好 體 育

愛 好 文 娛

合   計(jì)
男  生15AB
女  生C10D
合  計(jì)20E40
(1)將2×2列聯(lián)表A、B、C、D、E三處補(bǔ)充完整;
(2)若已選出指定的三個(gè)男生甲、乙、丙,兩個(gè)女生M,N,現(xiàn)從中選兩人參加某項(xiàng)活動(dòng),求選出的兩個(gè)人恰好是一男一女的概率;
(3)是否有85%的把握認(rèn)為性別與愛好體育有關(guān)系?
附:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

參考數(shù)據(jù):
P(K2≥k)0.250.150.100.050.025
k1.3232.0722.7063.8415.024

查看答案和解析>>

同步練習(xí)冊(cè)答案