分析 (1)求出函數的導數,通過討論a的范圍,求出函數的單調區(qū)間,得到函數的最大值,從而求出a的值即可;
(2)構造函數g(x)=f(x)-f(2-x),0<x≤1,根據函數的單調性得到f(m)<f(2-m),又f(m)=f(n),得到f(n)<f(2-m),從而證出結論即可.
解答 解:(1)∵f(x)=lnx-ax2,x>0,
∴f′(x)=$\frac{1-2{ax}^{2}}{x}$,
a≤0時,f′(x)>0恒成立,
函數f(x)在(0,+∞)遞增,無極大值,
a>0時,f′(x)>0,0<x<$\frac{1}{\sqrt{2a}}$,
由f′(x)<0,得:x>$\frac{1}{\sqrt{2a}}$,由f′(x)>0,得:0<x<$\frac{1}{\sqrt{2a}}$,
∴f(x)在(0,$\frac{1}{\sqrt{2a}}$)遞增,在($\frac{1}{\sqrt{2a}}$,+∞)遞減,
∴f(x)的極大值是f($\frac{1}{\sqrt{2a}}$)=-$\frac{1}{2}$ln2a-$\frac{1}{2}$=-$\frac{1}{2}$,解得:a=$\frac{1}{2}$;
(2)由(1)得:f(x)=lnx-$\frac{1}{2}$x2在(0,1]遞增,在(1,+∞)遞減,
構造函數g(x)=f(x)-f(2-x),0<x≤1,
g(x)=lnx-$\frac{1}{2}$x2-[ln(2-x)-$\frac{1}{2}$(2-x)2],
則g′(x)=$\frac{{2(x-1)}^{2}}{x(2-x)}$≥0,
故函數g(x)在(0,1]遞增,
又f(m)=f(n),m<n,
∴0<m<1,n>1,
∵g(1)=f(1)-f(2-1)=0,
∴g(m)<g(1)=0,
即f(m)-f(2-m)<0,
∴f(m)<f(2-m),
又f(m)=f(n),∴f(n)<f(2-m),
∵n>1,2-m>1,函數f(x)在(1,+∞)遞減,
∴n>2-m,即m+n>2=4a.
點評 本題考查了函數的單調性、極值問題,考查導數的應用以及分類討論思想,不等式的證明,是一道中檔題.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | -1 | B. | 0 | C. | 1 | D. | 4 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | -$\frac{12}{5}$ | B. | $\frac{12}{5}$ | C. | -$\frac{4}{3}$ | D. | $\frac{4}{3}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 18 $\sqrt{2}$ | B. | 16 | C. | 24 | D. | 18 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com