A. | $\frac{4}{3}$ | B. | $\frac{2\sqrt{3}}{3}$ | C. | $\frac{7}{6}$ | D. | $\frac{\sqrt{42}}{6}$ |
分析 利用雙曲線的定義與余弦定理可得到a2與c2的關系,從而可求得該雙曲線的離心率.
解答 解:設該雙曲線的離心率為e,依題意,||PF1|-|PF2||=2a,
∴|PF1|2+|PF2|2-2|PF1|•|PF2|=4a2,
不妨設|PF1|2+|PF2|2=x,|PF1|•|PF2|=y,
上式為:x-2y=4a2,①
∵∠F1PF2=60°,
∴在△F1PF2中,
由余弦定理得,|F1F2|2=|PF1|2+|PF2|2-2|PF1|•|PF2|•cos60°=4c2,②
即x-y=4c2,②
又|OP|=3b,$\overrightarrow{P{F}_{1}}$+$\overrightarrow{P{F}_{2}}$=2$\overrightarrow{PO}$,
∴$\overrightarrow{P{F}_{1}}$2+$\overrightarrow{P{F}_{2}}$2+2|$\overrightarrow{P{F}_{1}}$|•|$\overrightarrow{P{F}_{2}}$|•cos60°=4|$\overrightarrow{PO}$|2=36b2,
即|PF1|2+|PF2|2+|PF1|•|PF2|=36b2,
即x+y=36b2,③
由②+③得:2x=4c2+36b2,
①+③×2得:3x=4a2+72b2,
于是有12c2+108b2=8a2+144b2,
∴$\frac{{c}^{2}}{{a}^{2}}$=$\frac{7}{6}$,
∴e=$\frac{c}{a}$=$\frac{\sqrt{42}}{6}$.
故選:D.
點評 本題考查雙曲線的定義與余弦定理的應用,得到a2與c2的關系是關鍵,也是難點,考查分析問題,解決問題的能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{3}{8}$ | B. | $\frac{3}{40}$ | C. | $\frac{1}{6}$ | D. | $\frac{1}{12}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
車流量x(萬輛/小時) | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
PM2.5濃度y(微克/立方米) | 30 | 36 | 38 | 40 | 42 | 44 | 50 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{9}{10}$ | B. | $\frac{3}{10}$ | C. | $-\frac{3}{10}$ | D. | $-\frac{9}{10}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | -1 | C. | -2 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
時間 | 星期一 | 星期二 | 星期三 | 星期四 | 星期五 | 星期六 | 星期日 |
車流量x(萬輛) | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
PM2.5的濃度y(微克/立方米) | 28 | 30 | 35 | 41 | 49 | 56 | 62 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{3}{16}$ | B. | $\frac{4}{9}$ | C. | $\frac{3}{8}$ | D. | $\frac{8}{9}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | {x|-2<x<2} | B. | {x|x<-2或x>2} | C. | {x|x<-2或2<x≤4} | D. | {x|x<-2或2<x<4} |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com