19.已知直三棱柱ABC-A1B1C1中,AB=3,AC=4,AB⊥AC,AA1=2,則該三棱柱內(nèi)切球的表面積與外接球的表面積的和為33π.

分析 求出外接球的半徑、內(nèi)切球的半徑,即可求出該三棱柱內(nèi)切球的表面積與外接球的表面積的和.

解答 解:將三棱柱擴(kuò)充為長方體,對角線長為$\sqrt{9+16+4}$=$\sqrt{29}$,∴外接球的半徑為$\frac{\sqrt{29}}{2}$,外接球的表面積為29π,
△ABC的內(nèi)切圓的半徑為$\frac{3×4}{3+4+5}$=1,∴該三棱柱內(nèi)切球的表面積4π,
∴三棱柱內(nèi)切球的表面積與外接球的表面積的和為29π+4π=33π,
故答案為:33π.

點(diǎn)評 本題考查該三棱柱內(nèi)切球的表面積與外接球的表面積的和,考查學(xué)生的計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.下列命題中,真命題的個數(shù)為①對任意的a,b∈R,a>b是a|a|>b|b|的充要條件;②在△ABC中,若A>B,則sinA>sinB;③非零向量$\overrightarrow a,\overrightarrow b$,若$\overrightarrow a•\overrightarrow b>0$,則向量$\overrightarrow a$與向量$\overrightarrow b$的夾角為銳角;④$\frac{ln3}{3}>\frac{ln2}{2}>\frac{ln5}{5}$.( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)與橢圓$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1的焦點(diǎn)重合,離心率互為倒數(shù),設(shè)F1,F(xiàn)2為雙曲線C的左、右焦點(diǎn),P為右支上任意一點(diǎn),則$\frac{|P{F}_{1}{|}^{2}}{|P{F}_{2}|}$的最小值為( 。
A.4B.8C.16D.32

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知圓F1:(x+1)2+y2=16,定點(diǎn)F2(1,0),A是圓F1上的一動點(diǎn),線段F2A的垂直平分線交半徑F1A于P點(diǎn).
(Ⅰ)求P點(diǎn)的軌跡C的方程;
(Ⅱ)四邊形EFGH的四個頂點(diǎn)都在曲線C上,且對角線EG,F(xiàn)H過原點(diǎn)O,若kEG•kFH=-$\frac{3}{4}$,求證:四邊形EFGH的面積為定值,并求出此定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知函數(shù)f(x)是定義在R上的奇函數(shù),且當(dāng)x∈(0,+∞)時,f(x)=2017x+log2017x,則f(x)在R上的零點(diǎn)的個數(shù)為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.設(shè)不等式0<|x+2|-|1-x|<2的解集為M,a,b∈M
(1)證明:|a+$\frac{1}{2}$b|<$\frac{3}{4}$;
(2)比較|4ab-1|與2|b-a|的大小,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.“a=$\frac{1}{5}$”是“直線2ax+(a-1)y+2=0與直線(a+1)x+3ay+3=0垂直”的充分不必要.條件(從“充分不必要”,“必要不充分”,“充要”,“既不充分也不必要”中選取一個填入)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.某人5次上班途中所花的時間(單位:分鐘)分別為12,8,10,11,9,則這組數(shù)據(jù)的標(biāo)準(zhǔn)差為$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知函數(shù)f(n)=n2cos(nπ),數(shù)列{an}滿足an=f(n)+f(n+1)(n∈N+),則a1+a2+…+a2n=-2n.

查看答案和解析>>

同步練習(xí)冊答案