13.已知向量$\overrightarrow{a}$=(2,1),$\overrightarrow$=(3,x)且$\overrightarrow{a}$•($\overrightarrow{a}$-2$\overrightarrow$)=0,則|3$\overrightarrow$|的值為( 。
A.$\sqrt{140}$B.$\frac{3}{2}\sqrt{85}$C.$\sqrt{120}$D.$\sqrt{110}$

分析 由已知求出$\overrightarrow{a}$-2$\overrightarrow$的坐標,結(jié)合數(shù)量積為0求得x,再由模的公式求解.

解答 解:∵$\overrightarrow{a}$=(2,1),$\overrightarrow$=(3,x),
∴$\overrightarrow{a}$-2$\overrightarrow$=(-4,1-2x),
由$\overrightarrow{a}$•($\overrightarrow{a}$-2$\overrightarrow$)=0,得2×(-4)+1×(1-2x)=-8+1-2x=0,
即x=-$\frac{7}{2}$.
∴$\overrightarrow=(3,-\frac{7}{2})$,則|$3\overrightarrow$|=3×$\sqrt{9+\frac{49}{4}}$=$\frac{3}{2}\sqrt{85}$.
故選:B.

點評 本題考查平面向量的數(shù)量積運算,考查了向量垂直的坐標運算,是基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

4.已知四棱錐P-ABCD的底面為平行四邊形,PD⊥平面ABCD,M在邊PC上
(Ⅰ)當M在邊PC上什么位置時,AP∥平面MBD?并給出證明.
(Ⅱ)在(Ⅰ)條件之下,若AD⊥PB,求證:BD⊥平面PAD.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.設(shè)函數(shù)f(x)=cosx+2sinx,則f′($\frac{π}{4}$)=(  )
A.-$\frac{\sqrt{2}}{2}$B.$\frac{\sqrt{2}}{2}$C.$\sqrt{2}$D.-$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知動點M(x,y)到定點F(0,2)的距離等于M到x軸的距離,求證:點M的軌跡方程是y=$\frac{{x}^{2}}{4}$+1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.函數(shù)f(x)=$\sqrt{1-3x}$的定義域是(-∞,$\frac{1}{3}$].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.某四棱錐的三視圖如圖所示,該四棱錐的表面積為( 。
A.$1+\sqrt{2}$B.3C.$2+\sqrt{2}$D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知函數(shù)f(x)=x+$\frac{1}{x}$,分別用定義法:
(1)判斷函數(shù)f(x)的奇偶性;
(2)證明:函數(shù)f(x)=x+$\frac{1}{x}$在(1,+∞)上是增函數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.如圖,已知PA垂直于平行四邊形ABCD所在平面,若PC⊥BD,則平行四邊形ABCD一定是( 。
A.正方形B.菱形C.矩形D.非上述三種圖形

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.函數(shù)f(x)=$\frac{1}{x}$+log2$\frac{1+ax}{1-x}$為奇函數(shù),則實數(shù)a=1.

查看答案和解析>>

同步練習冊答案