7.已知函數(shù)f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<$\frac{π}{2}$)的圖象(部分)如圖所示,則f(x)的解析式是( 。
A.f(x)=2sin(πx+$\frac{π}{6}$)B.f(x)=2sin(2πx+$\frac{π}{6}$)C.f(x)=2sin(πx+$\frac{π}{3}$)D.f(x)=2sin(2πx+$\frac{π}{3}$)

分析 根據(jù)圖象可得周期T=2,A=2,利用周期公式可求ω,利用2sin($\frac{1}{3}$π+φ)=2及φ的范圍可求φ的值,即可確定函數(shù)解析式.

解答 解:∵根據(jù)圖象判斷:周期T=4×($\frac{5}{6}$-$\frac{1}{3}$)=2,A=2,
∴ω=$\frac{2π}{2}$=π,
∵2sin($\frac{1}{3}$π+φ)=2,
∴$\frac{1}{3}$π+φ=2kπ+$\frac{π}{2}$,k∈z,
∴φ=2kπ+$\frac{π}{6}$,k∈z,
∵|φ|<$\frac{π}{2}$,
∴φ=$\frac{π}{6}$.
∴f(x)=2sin(πx+$\frac{π}{6}$)
故選:A

點(diǎn)評(píng) 本題考查了三角函數(shù)的圖象和性質(zhì),考查了由y=Asin(ωx+φ)的部分圖象確定其解析式,關(guān)鍵是據(jù)圖確定參變量的值,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.若等比數(shù)列{an}的各項(xiàng)均為正數(shù),且a3-a1=2,則a5的最小值為8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.如圖,在直角梯形ABCD中,AB∥DC,∠ABC=90°,AB=3,BC=DC=2,若E,F(xiàn)分別是線段DC和BC上的動(dòng)點(diǎn),則$\overrightarrow{AC}•\overrightarrow{EF}$的取值范圍是[-4,6].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.已知$f(x)=sinxcosx-{cos^2}(x+\frac{π}{4})$x∈[-π,0],則f(x)的單調(diào)減區(qū)間為$[-\frac{3π}{4},0]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.在三棱錐P-ABC,PA⊥平面ABC,AB=AC=AP=2,∠ABC=60°,則此三棱錐的外接球的表面積為$\frac{28π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知函數(shù)f(x)=x(a-$\frac{1}{e^x}$),曲線y=f(x)上存在兩個(gè)不同點(diǎn),使得曲線在這兩點(diǎn)處的切線都與y軸垂直,則實(shí)數(shù)a的取值范圍是(  )
A.(-e2,+∞)B.(-e2,0)C.(-$\frac{1}{e^2}$,+∞)D.(-$\frac{1}{e^2}$,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知函數(shù)f(x)=alnx,g(x)=x+$\frac{1}{x}$+f′(x)
(Ⅰ)討論h(x)=g(x)-f(x)的單調(diào)性;
(Ⅱ)若h(x)的極值點(diǎn)為3,設(shè)方程f(x)+mx=0的兩個(gè)根為x1,x2,且$\frac{{x}_{2}}{{x}_{1}}$≥ea,求證:$\frac{f′({x}_{1}+{x}_{2})+m}{f′({x}_{1}-{x}_{2})}$>$\frac{6}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知集合A={x|x2-x+4>x+12},B={x|2x-1<8},則A∩(∁RB)=( 。
A.{x|x≥4}B.{x|x>4}C.{x|x≥-2}D.{x|x<-2或x≥4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知變量x,y滿足約束條件$\left\{\begin{array}{l}{x-y≤2}\\{x+y≤4}\\{x≥1}\end{array}\right.$,則$\frac{y}{x}$的最大值為( 。
A.$\frac{1}{3}$B.1C.3D.4

查看答案和解析>>

同步練習(xí)冊(cè)答案