8.下列各命題中不正確的是( 。
A.函數(shù)f(x)=ax+1(a>0,a≠1)的圖象過定點(diǎn)(-1,1)
B.函數(shù)$f(x)={x^{\frac{1}{2}}}$在[0,+∞)上是增函數(shù)
C.函數(shù)f(x)=logax(a>0,a≠1)在(0,+∞)上是增函數(shù)
D.函數(shù)f(x)=x2+4x+2在(0,+∞)上是增函數(shù)

分析 A,由a0=1可判定;
B,根據(jù)冪函數(shù)的性質(zhì)可判定;
C,函數(shù)f(x)=logax(a>1)在(0,+∞)上是增函數(shù);
D,由函數(shù)f(x)=x2+4x+2的單調(diào)增區(qū)間為(-2,+∞)可判定;

解答 解:對(duì)于A,∵a0=1∴函數(shù)f(x)=ax+1(a>0,a≠1)的圖象過定點(diǎn)(-1,1),正確;
對(duì)于B,根據(jù)冪函數(shù)的性質(zhì)可判定,函數(shù)$f(x)={x^{\frac{1}{2}}}$在[0,+∞)上是增函數(shù),正確;
對(duì)于C,函數(shù)f(x)=logax(a>1)在(0,+∞)上是增函數(shù),故錯(cuò);
對(duì)于D,函數(shù)f(x)=x2+4x+2的單調(diào)增區(qū)間為(-2,+∞),故在(0,+∞)上是增函數(shù),正確;
故選:C.

點(diǎn)評(píng) 本考查了命題真假的判定,涉及了函數(shù)的性質(zhì),屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.某廠擬用集裝箱托運(yùn)甲、乙兩種貨物,集裝箱的體積、重量、可獲利潤和托運(yùn)能力等限制數(shù)據(jù)列在表中,如何設(shè)計(jì)甲、乙兩種貨物應(yīng)各托運(yùn)的箱數(shù)可以獲得最大利潤,最大利潤是多少?
貨物體積(m3/箱)重量(50kg/箱)利潤(百元/箱)
5220
4510
托運(yùn)限制2413

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.用隨機(jī)模擬方法求得某幾何概型的概率為m,其實(shí)際概率的大小為n,則( 。
A.m>nB.m<nC.m=nD.m是n的近似值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.函數(shù)y=sin($\frac{3π}{2}$+x)cos($\frac{π}{6}$-x)的最大值為$\frac{1}{2}-\frac{\sqrt{3}}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.命題?x∈R,x2-2x+4≤0的否定為?x∈R,x2-2x+4>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.定義在R上的偶函數(shù)f(x)滿足f(x)+f(x+1)=0,且在[-3,-2]上f(x)=2x+5,A、B是三邊不等的銳角三角形的兩內(nèi)角,則下列不等式正確的是( 。
A.f(sinA)>f(sinB)B.f(cosA)>f(cosB)C.f(sinA)>f(cosB)D.f(sinA)<f(cosB)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.(1)已知向量$\overrightarrow{AB}=(6,1)$,$\overrightarrow{BC}=(x,y)$,$\overrightarrow{CD}=(-2,-3)$,若$\overrightarrow{BC}∥\overrightarrow{AD}$,試求x與y之間的表達(dá)式.

(2)在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),A、B、C三點(diǎn)滿足$\overrightarrow{OC}=\frac{1}{3}\overrightarrow{OA}+\frac{2}{3}\overrightarrow{OB}$,求證:A、B、C三點(diǎn)共線,并求$\frac{{|\overrightarrow{AC}|}}{{|\overrightarrow{CB}|}}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知數(shù)列{an}滿足a1=1,(an-3)an+1-an+4=0(n∈N*).
(1)求a2,a3,a4;
(2)猜想{an}的通項(xiàng)公式,并用數(shù)學(xué)歸納法證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知正數(shù)數(shù)列{an}的前n項(xiàng)和Sn=$\frac{1}{2}$(an+$\frac{1}{an}$),
(1)求a1,a2,a3;
(2)歸納猜想an的表達(dá)式,并用數(shù)學(xué)歸納法證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案