12.在直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為$\left\{\begin{array}{l}{x=\sqrt{2}cosα}\\{y=sinα}\end{array}\right.$(α為參數(shù)),以原點(diǎn)O為極點(diǎn),x軸正半軸為極軸,建立極坐標(biāo)系,直線l的極坐標(biāo)方程為ρsin(θ+$\frac{π}{4}$)=4$\sqrt{2}$.
(1)求曲線C的普通方程與直線l的直角坐標(biāo)方程;
(2)設(shè)P為曲線C上的動(dòng)點(diǎn),求點(diǎn)P到直線l的距離的最小值.

分析 (1)利用三種方程的轉(zhuǎn)化方法,即可求曲線C的普通方程與直線l的直角坐標(biāo)方程;
(2)設(shè)P為曲線C上的動(dòng)點(diǎn),利用參數(shù)方程,求點(diǎn)P到直線l的距離的最小值.

解答 解:(1)曲線C的參數(shù)方程為$\left\{\begin{array}{l}{x=\sqrt{2}cosα}\\{y=sinα}\end{array}\right.$(α為參數(shù)),普通方程為$\frac{{x}^{2}}{2}+{y}^{2}$=1
直線l的極坐標(biāo)方程為ρsin(θ+$\frac{π}{4}$)=4$\sqrt{2}$化為:$\frac{\sqrt{2}}{2}$(ρsinθ+ρcosθ)=4$\sqrt{2}$,
化成直角坐標(biāo)方程為:x+y-8=0;
(2)P($\sqrt{2}$cosα,sinα)到直線x+y-8=0的距離d=$\frac{|\sqrt{2}cosα+sinα-8|}{\sqrt{2}}$=$\frac{|\sqrt{3}sin(α+θ)-8|}{\sqrt{2}}$,
∴sin(α+θ)=1時(shí),d的最小值為$\frac{8\sqrt{2}-\sqrt{6}}{2}$.

點(diǎn)評 本題考查三種方程的轉(zhuǎn)化,考查點(diǎn)到直線距離公式的運(yùn)用,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.在三棱錐P-ABC,PA⊥平面ABC,AB=AC=AP=2,∠ABC=60°,則此三棱錐的外接球的表面積為$\frac{28π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知函數(shù)f(x)=xln|x|+1,則f(x)的極大值與極小值之和為(  )
A.0B.1C.$2-\frac{2}{e}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=ex-asinx-1,a∈R.
(1)若a=1,求f(x)在x=0處的切線方程;
(2)若f(x)≥0在區(qū)間[0,1)恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知橢圓E的右焦點(diǎn)與拋物線y2=4x的焦點(diǎn)重合,點(diǎn)M$(1,\frac{3}{2})$在橢圓E上.
(1)求橢圓E的方程;
(2)設(shè)P(-4,0),直線y=kx+1與橢圓E交于A,B兩點(diǎn),若直線PA,PB均與圓x2+y2=r2(r>0)相切,求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知變量x,y滿足約束條件$\left\{\begin{array}{l}{x-y≤2}\\{x+y≤4}\\{x≥1}\end{array}\right.$,則$\frac{y}{x}$的最大值為( 。
A.$\frac{1}{3}$B.1C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.在區(qū)間[0,1]內(nèi)隨機(jī)取兩個(gè)數(shù)分別為a,b,則使得方程x2+2ax+b2=0有實(shí)根的概率為(  )
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.若函數(shù)f(x)=sin(2x-$\frac{π}{6}$)的圖象向左平移$\frac{π}{6}$個(gè)單位后,得到y(tǒng)=g(x)的圖象,則下列說法錯(cuò)誤的是( 。
A.y=g(x)的最小正周期為πB.y=g(x)的圖象關(guān)于直線x=$\frac{π}{6}$對稱
C.y=g(x)在[-$\frac{π}{6}$,$\frac{π}{3}$]上單調(diào)遞增D.y=g(x)的圖象關(guān)于點(diǎn)($\frac{5π}{12}$,0)對稱

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=ex+x2-x,g(x)=x2+ax+b,a,b∈R.
(Ⅰ)當(dāng)a=1時(shí),求函數(shù)F(x)=f(x)-g(x)的單調(diào)區(qū)間;
(Ⅱ)若曲線y=f(x)在點(diǎn)(0,1)處的切線l與曲線y=g(x)切于點(diǎn)(1,c),求a,b,c的值;
(Ⅲ)若f(x)≥g(x)恒成立,求a+b的最大值.

查看答案和解析>>

同步練習(xí)冊答案