6.若x,y滿足$\left\{\begin{array}{l}y≥1\;\\ y≤x-1\;\\ x+y≤m\;\end{array}\right.$且z=x2+y2的最大值為10,則m=4.

分析 作出不等式組對應(yīng)的平面區(qū)域,利用z的幾何意義進行求解即可.

解答 解:作出不等式組對應(yīng)的平面區(qū)域如圖;則k>1,
則z的幾何意義是區(qū)域內(nèi)的點到原點的距離的平方
由圖象知,O到A的距離最大,
∵z=x2+y2的最大值為10,
由$\left\{\begin{array}{l}{x+y=m}\\{y=1}\end{array}\right.$,解得A(m-1,1),
則OA=$\sqrt{(m-1)^{2}+1}$=$\sqrt{10}$
即m2-2m+2=10,
即m2-2m-8=0,解得m=4或m=-2(舍),
故m=4,
故答案為:4.

點評 本題主要考查線性規(guī)劃以及點到直線的距離的應(yīng)用,利用數(shù)形結(jié)合是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的離心率為$\frac{{\sqrt{3}}}{2}$,其左、右焦點為F1,F(xiàn)2,P為短軸的一個端點,△PF1F2的面積等于$\sqrt{3}$.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)點A(x1,y1),B(x2,y2)是橢圓C上的任意兩點,O是坐標原點.
(。┤鬹OA•kOB=-$\frac{1}{4}$,求證:x12+x22為定值.
(ⅱ)若以AB為直徑的圓經(jīng)過點O,求△OAB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.若非零向量$\overrightarrow a,\overrightarrow b$滿足|$\overrightarrow a$|=2|$\overrightarrow b$|=|$\overrightarrow a$+$\overrightarrow b$|,則向量$\overrightarrow a$與$\overrightarrow b$夾角的余弦值為-$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知定義在R上的函數(shù)f(x)滿足f(x)=$\left\{\begin{array}{l}{x^2}+2,x∈[0,1)\\ 2-{x^2},x∈[-1,0)\end{array}$,且f(x+2)=f(x),g(x)=$\frac{2x+5}{x+2}$,則方程f(x)=g(x)在區(qū)間[-6,2]上的所有實根之和為( 。
A.-5B.-7C.-9D.-11

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.如圖是某個幾何體的三視圖,則這個幾何體體積是( 。
A.$2+\frac{π}{2}$B.$2+\frac{π}{3}$C.$4+\frac{π}{3}$D.$4+\frac{π}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.下列函數(shù)中,既是偶函數(shù)又是(0,+∞)上的增函數(shù)的是( 。
A.y=x3B.y=2|x|C.y=-x2D.y=log3(-x)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=sinxsin$(\frac{π}{2}-x)+\sqrt{3}{cos^2}$x.
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)求f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知Sn為數(shù)列{an}的前n項和,且Sn=$\frac{1}{2}$n2+$\frac{3}{2}$n-1.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)若bn=$\frac{1}{{a}_{n}•{a}_{n+1}}$,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.若f(x)=-x,g(f(x))=2x+x2,則g(-1)=3.

查看答案和解析>>

同步練習(xí)冊答案