對(duì)任意實(shí)數(shù)a,b,函數(shù)F(a,b)=(a+b-|a-b|),如果函數(shù)f(x)=-x2+2x+3,g(x)=x+1,那么函數(shù)G(x)=F(f(x),g(x))的最大值等于________.
3
由題可知F(a,b)=(a+b-|a-b|)=,則在同一坐標(biāo)系中畫(huà)出f(x)=-x2+2x+3,g(x)=x+1的圖象,數(shù)形結(jié)合可知x=2時(shí),G(x)max=3.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

請(qǐng)你設(shè)計(jì)一個(gè)包裝盒,如圖所示,是邊長(zhǎng)為的正方形硬紙片,切去陰影部分所示的四個(gè)全等的等腰直角三角形,再沿虛線(xiàn)折起,使得四個(gè)點(diǎn)重合于圖中的點(diǎn)P,正好形成一個(gè)正四棱柱形狀的包裝盒,上是被切去的等腰直角三角形斜邊的兩個(gè)端點(diǎn),設(shè)
(1)若廣告商要求包裝盒側(cè)面積最大,試問(wèn)應(yīng)取何值?
(2)若廣告商要求包裝盒容積最大,試問(wèn)應(yīng)取何值?并求出此時(shí)包裝盒的高與底面邊長(zhǎng)的比值.
    

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)(是自然對(duì)數(shù)的底數(shù),),且
(1)求實(shí)數(shù)的值,并求函數(shù)的單調(diào)區(qū)間;
(2)設(shè),對(duì)任意,恒有成立.求實(shí)數(shù)的取值范圍;
(3)若正實(shí)數(shù)滿(mǎn)足,,試證明:;并進(jìn)一步判斷:當(dāng)正實(shí)數(shù)滿(mǎn)足,且是互不相等的實(shí)數(shù)時(shí),不等式是否仍然成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知函數(shù)滿(mǎn)足:,則=__________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

某種新藥服用x小時(shí)后血液中的殘留量為y毫克,如圖所示為函數(shù)y=f(x)的圖象,當(dāng)血液中藥物殘留量不小于240毫克時(shí),治療有效.設(shè)某人上午8:00第一次服藥,為保證療效,則第二次服藥最遲的時(shí)間應(yīng)為(  )
A.上午10:00B.中午12:00
C.下午4:00D.下午6:00

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)函數(shù),為自然對(duì)數(shù)的底數(shù))。若存在使成立,則的取值范圍是(     )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

對(duì)于實(shí)數(shù)x,符號(hào)[x]表示不超過(guò)x的最大整數(shù).例如,[π]=3,[-1.08]=-2.如果定義函數(shù)f(x)=x-[x],那么下列命題中正確的一個(gè)是(  )
A.f(5)=1
B.方程f(x)=有且僅有一個(gè)解
C.函數(shù)f(x)是周期函數(shù)
D.函數(shù)f(x)是減函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知函數(shù)f(x)=若f(f(1))>3a2,則a的取值范圍是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

將點(diǎn)P(-2,2)變換為P′(-6,1)的伸縮變換公式為(  )
A.   B.C.   D.

查看答案和解析>>

同步練習(xí)冊(cè)答案