A. | ($\frac{1}{2017}$,$\frac{1}{2015}$) | B. | ($\frac{1}{2016}$,$\frac{1}{2014}$) | ||
C. | (-$\frac{1}{2015}$,-$\frac{1}{2017}$)∪($\frac{1}{2017}$,$\frac{1}{2015}$) | D. | (-$\frac{1}{2014}$,$\frac{1}{2016}$)∪($\frac{1}{2016}$,$\frac{1}{2014}$) |
分析 構(gòu)造函數(shù)h(x)=$\frac{f(x)}{{e}^{x}}$,根據(jù)條件得到h(x)的一個周期為2,再根據(jù)導(dǎo)數(shù)得到函數(shù)h(x)在[0,1]上單調(diào)遞增,利用數(shù)形結(jié)合的思想得到當(dāng)k∈($\frac{1}{2007}$,$\frac{1}{2005}$)函數(shù)y=f(x)-kxex零點有2016個,同理可求k∈(-$\frac{1}{2005}$,-$\frac{1}{2007}$)時,也滿足,問題得以解決.
解答 解:由題意設(shè)函數(shù)h(x)=$\frac{f(x)}{{e}^{x}}$,
∵$\frac{f(x+1)}{{e}^{x+1}}$=$\frac{f(1-x)}{{e}^{1-x}}$,
即h(1+x)=h(1-x),
∴h(x)的圖象關(guān)于直線x=1對稱,
∵ex-1f(x+1)=ex+1f(x-1),
∴h(x+1)=h(x-1),
即h(x)的一個周期為2,
又∵h′(x)=$\frac{f′(x)-f(x)}{{e}^{x}}$>0,
∴h(x)在[0,1]上單調(diào)遞增,
∴h(0)=0,h(1)=1,
又函數(shù)y=f(x)-kxex零點的個數(shù)即為方程f(x)-kxex=0的根的個數(shù),
∴h(x)=$\frac{f(x)}{{e}^{x}}$=kx,
畫出h(x)的模擬圖象和y=kx的圖象,分析可知,
當(dāng)k∈($\frac{1}{2007}$,$\frac{1}{2005}$)每個周期內(nèi)h(x),kx的圖象有2個交點,共有1008個周期,
函數(shù)y=f(x)-kxex零點有2016個,
同理當(dāng)k∈(-$\frac{1}{2005}$,-$\frac{1}{2007}$)時,
函數(shù)y=f(x)-kxex零點也有2016個,
綜上所述,k∈(-$\frac{1}{2015}$,-$\frac{1}{2017}$)∪($\frac{1}{2017}$,$\frac{1}{2015}$),
故選:C.
點評 本題主要考查函數(shù)的零點以及數(shù)形結(jié)合方法,數(shù)形結(jié)合是數(shù)學(xué)解題中常用的思想方法,能夠變抽象思維為形象思維,有助于把握數(shù)學(xué)問題的本質(zhì).
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=-$\sqrt{x}$ | B. | y=$\frac{1}{x}$ | C. | y=ex-e-x | D. | y=cosx |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,2017) | B. | (0,2018) | C. | (2017,+∞) | D. | (2018,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com