【題目】如圖,在四棱錐中,底面是正方形,側(cè)棱底面 中點(diǎn),

(1)證明:平面;

(2)證明:平面平面

【答案】(1)證明見(jiàn)解析;(2)證明見(jiàn)解析.

【解析】

試題分析:(1)連結(jié),設(shè)交于點(diǎn),連結(jié),易證的中位線(xiàn),從而,再利用線(xiàn)面平行的判斷定理即可證得平面;(2)依題意,易證底面,再利用面面垂直的判斷定理即可證得平面平面.

試題解析:(1)連接,連接

底面是正方形,中點(diǎn),中,的中點(diǎn),

…………(3分)

平面平面,平面…………(5分)

(2)側(cè)棱底面底面

底面是正方形,

為平面內(nèi)兩條相交直線(xiàn),平面…………(8分)

平面,

的中點(diǎn),

為平面內(nèi)兩條相交直線(xiàn),平面…………(11分)

平面,平面平面…………(12分)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】微信是騰訊公司推出的一種手機(jī)通訊軟件,它支持發(fā)送語(yǔ)音短信、視頻、圖片和文字,一經(jīng)推出便風(fēng)靡全國(guó),甚至涌現(xiàn)出一批在微信的朋友圈內(nèi)銷(xiāo)售商品的人被稱(chēng)為微商.為了調(diào)查每天微信用戶(hù)使用微信的時(shí)間,某經(jīng)銷(xiāo)化妝品的微商在一廣場(chǎng)隨機(jī)采訪(fǎng)男性、女性用戶(hù)各50名,其中每天玩微信超過(guò)6小時(shí)的用戶(hù)列為“微信控”,否則稱(chēng)其為“非微信控”,調(diào)查結(jié)果如下:

1根據(jù)以上數(shù)據(jù),能否有60%的把握認(rèn)為“微信控”與”性別“有關(guān)?

2現(xiàn)從調(diào)查的女性用戶(hù)中按分層抽樣的方法選出5人贈(zèng)送營(yíng)養(yǎng)面膜1份,求所抽取5人中“微信控”和“非微信控”的人數(shù);

32中抽取的5人中再隨機(jī)抽取3人贈(zèng)送200元的護(hù)膚品套裝,記這3人中“微信控”的人數(shù)為X,試求X的分布列與數(shù)學(xué)期望.

參考公式:,其中n=a+b+c+d.

參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直三棱柱中, ,,的中點(diǎn),是等腰三角形,的中點(diǎn),上一點(diǎn).

1平面,求;

2平面將三棱柱分成兩個(gè)部分,求較小部分與較大部分的體積之比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】心理學(xué)家分析發(fā)現(xiàn)視覺(jué)和空間能力與性別有關(guān),某數(shù)學(xué)興趣小組為了驗(yàn)證這個(gè)結(jié)論,從興趣小組中按分層抽樣的方法抽取50名同學(xué)(男30女20),給所有同學(xué)幾何題和代數(shù)題各一題,讓各位同學(xué)自由選擇一道題進(jìn)行解答.選題情況如下表:(單位:人)

)能否據(jù)此判斷有97.5%的把握認(rèn)為視覺(jué)和空間能力與性別有關(guān)?

)經(jīng)過(guò)多次測(cè)試后,甲每次解答一道幾何題所用的時(shí)間在57分鐘,乙每次解答一道幾何題所用的時(shí)間在68分鐘,現(xiàn)甲、乙各解同一道幾何題,求乙比甲先解答完的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直角如圖所示其中,分別是,邊上的中點(diǎn).現(xiàn)沿折痕翻折使得與平面外一點(diǎn)重合,得到如圖2所示的幾何體.

1證明:平面平面

2記平面與平面的交線(xiàn)為,探究直線(xiàn)是否平行若平行請(qǐng)給出證明,若不平行,請(qǐng)說(shuō)明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直四棱柱ABCDA1B1C1D1中,底面ABCD為等腰梯形,ABCD,AB4,BCCD2,AA12,EE1分別是棱AD,AA1的中點(diǎn)

1設(shè)F是棱AB的中點(diǎn),證明:直線(xiàn)EE1平面FCC1;

2證明:平面D1AC平面BB1C1C;

3求點(diǎn)D到平面D1AC的距離

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

1,判斷在區(qū)間內(nèi)的零點(diǎn)個(gè)數(shù)并說(shuō)明理由;

2內(nèi)的零點(diǎn)為,,若內(nèi)有兩個(gè)不等實(shí)根,,判斷的大小,并給出對(duì)應(yīng)的證明

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),其中為常數(shù)

1若曲數(shù)在點(diǎn)處的切線(xiàn)與直線(xiàn)垂直,求函數(shù)的單調(diào)遞減區(qū)間;

2若函數(shù)在區(qū)間[1,3]上的最小值為,求的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某城區(qū)有農(nóng)民、工人、知識(shí)分子家庭共計(jì)2 007戶(hù),其中農(nóng)民家庭1 600戶(hù),工人家庭304戶(hù).現(xiàn)要從中抽取容量為40的樣本,則在整個(gè)抽樣過(guò)程中,可以用到下列抽樣方法中的(  )

簡(jiǎn)單隨機(jī)抽樣、系統(tǒng)抽樣、分層抽樣

A. ②③ B. ①③

C. D. ①②③

查看答案和解析>>

同步練習(xí)冊(cè)答案