【題目】設(shè)函數(shù).
(1)求函數(shù)的零點(diǎn);
(2)當(dāng)時(shí),求證:在區(qū)間上單調(diào)遞減;
(3)若對(duì)任意的正實(shí)數(shù),總存在,使得,求實(shí)數(shù)的取值范圍.
【答案】(1)見解析(2)證明見解析;(3)
【解析】
(1)討論,且,,解方程可得零點(diǎn);
(2)可令,運(yùn)用單調(diào)性的定義,證得在遞減,可得,即可得到證明;
(3)由題意可得,由絕對(duì)值的含義,化簡(jiǎn),得到在的單調(diào)性,即有,運(yùn)用絕對(duì)值不等式的性質(zhì),可得的最大值,即可得到的范圍.
解:(1)當(dāng)時(shí),的零點(diǎn)為;
當(dāng)且時(shí),由得,
由一元二次方程求根公式得,的零點(diǎn)為;
當(dāng)時(shí),方程中的判別式,故無零點(diǎn);
(2)證明:當(dāng)時(shí),,可令,
任取,
,
由,可得,,進(jìn)而,
即,可得在上遞減,
可得時(shí),,
則,
即在區(qū)間上單調(diào)遞減;
(3)對(duì)任意的正實(shí)數(shù),總存在,,使得,則,
當(dāng)時(shí),,
則在遞減,在,遞增,
可得,
由于,設(shè),可得,,
可得,即有,可得,
則.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)滿足,且當(dāng)時(shí),成立,若,,,則a,b,c的大小關(guān)系是()
A. aB. C. D. c
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)當(dāng)時(shí),證明:有且只有一個(gè)零點(diǎn);
(Ⅱ)求函數(shù)的極值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖正方體的棱長(zhǎng)為,、、,分別為、、的中點(diǎn).則下列命題:①直線與平面平行;②直線與直線垂直;③平面截正方體所得的截面面積為;④點(diǎn)與點(diǎn)到平面的距離相等;⑤平面截正方體所得兩個(gè)幾何體的體積比為.其中正確命題的序號(hào)為_______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若函數(shù)是偶函數(shù),求實(shí)數(shù)的值;
(2)若函數(shù),關(guān)于的方程有且只有一個(gè)實(shí)數(shù)根,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,函數(shù)
(1)討論函數(shù)的單調(diào)性;
(2)若是的極值點(diǎn),且曲線在兩點(diǎn), 處的切線互相平行,這兩條切線在y軸上的截距分別為、,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國已進(jìn)入新時(shí)代中國特色社會(huì)主義時(shí)期,人民生活水平不斷提高,某市隨機(jī)統(tǒng)計(jì)了城區(qū)若干戶市民十月人均生活支出比九月人均生活支出增加量(記為元)的情況,并根據(jù)統(tǒng)計(jì)數(shù)據(jù)制成如下頻率分布直方圖.
(1)根據(jù)頻率分布直方圖估算的平均值;
(2)視樣本中的頻率為概率,現(xiàn)從該市所有住戶中隨機(jī)抽取次,每次抽取戶,每次抽取相互獨(dú)立,設(shè)為抽出戶中值不低于元的戶數(shù),求的分布列和期望.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com