A. | 1 | B. | 2 | C. | 3 | D. | 4 |
分析 利用正切函數(shù)的圖象和性質(zhì),判斷各個(gè)選項(xiàng)是否正確,從而得出結(jié)論.
解答 解:①對于函數(shù)$y=2tan({2x+\frac{π}{3}})$,令2x+$\frac{π}{3}$=kπ+$\frac{π}{2}$,求得x=$\frac{kπ}{2}$+$\frac{π}{12}$,
可得它的圖象的對稱中心是($\frac{kπ}{2}$+$\frac{π}{12}$,0),k∈Z,故A錯(cuò)誤.
②對于函數(shù)$f(x)=2tan({-2x+\frac{π}{4}})$=-2tan(2x-$\frac{π}{4}$),該函數(shù)只有減區(qū)間,而沒有增區(qū)間,故B錯(cuò)誤.
③對于函數(shù)$y=2tan({2x+\frac{π}{3}})$,令2x+$\frac{π}{3}$≠kπ+$\frac{π}{2}$,求得x≠$\frac{1}{2}$kπ+$\frac{π}{12}$,
可得該函數(shù)的定義域是{x|x≠$\frac{1}{2}$kπ+$\frac{π}{12}$,k∈Z},故C正確.
④由于函數(shù)y=tanx+1在$[{-\frac{π}{4}\;,\;\;\frac{π}{3}}]$上單調(diào)遞增,故它的最大值為tan$\frac{π}{3}$+1=$\sqrt{3}+1$,最小值為tan(-$\frac{π}{4}$)+1=0,故D正確,
故選:B.
點(diǎn)評 本題主要考查正切函數(shù)的圖象和性質(zhì),屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | x2-$\frac{{y}^{2}}{2}$=1 | B. | $\frac{{x}^{2}}{4}$-y2=1 | C. | $\frac{{x}^{2}}{2}$-y2=1 | D. | $\frac{{x}^{2}}{3}$-$\frac{{y}^{2}}{3}$=1 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com