分析 由于AC∥EF,BD∥FG,所以得出EF與FG所成的角即為AC、BD所成的角,EFGH中有一內(nèi)角為30°,利用平行四邊形面積公式S=absinθ計(jì)算即可.
解答 解:∵AC∥EF,BD∥FG,
∴EF與FG所成的角即為AC、BD所成的角,
∴∠EFG(或其補(bǔ)角)=30°,S EFGH =EF×FG×sin∠EFG=$\frac{1}{2}$AC×$\frac{1}{2}$BD×sin30°,即${S_{EFGH}}=3×4×\frac{1}{2}=6$.
點(diǎn)評(píng) 本題考查空間直線和直線,直線和平面的位置關(guān)系的判定,異面直線的夾角和距離求解,考查了空間想象能力、計(jì)算能力,分析解決問(wèn)題能力.空間問(wèn)題平面化是解決空間幾何體問(wèn)題最主要的思想方法.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | [-4,1] | B. | [1,4] | C. | (-∞,-4]∪[1,+∞) | D. | (-∞,-1]∪[4,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 必要但不充分條件 | B. | 充分但不必要條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $-\frac{{4\sqrt{3}}}{5}$ | B. | $-\frac{{3\sqrt{3}}}{5}$ | C. | $\frac{{3\sqrt{3}}}{5}$ | D. | $\frac{{4\sqrt{3}}}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com