相關(guān)習(xí)題
 0  233836  233844  233850  233854  233860  233862  233866  233872  233874  233880  233886  233890  233892  233896  233902  233904  233910  233914  233916  233920  233922  233926  233928  233930  233931  233932  233934  233935  233936  233938  233940  233944  233946  233950  233952  233956  233962  233964  233970  233974  233976  233980  233986  233992  233994  234000  234004  234006  234012  234016  234022  234030  266669 

科目: 來(lái)源: 題型:解答題

5.已知圓C:x2+y2-2x-6y-3=0.
(1)求圓心C的坐標(biāo);
(2)若直線(xiàn)l:x-y+a=0與圓C相交于兩點(diǎn)A,B,且弦長(zhǎng)|AB|=5$\sqrt{2}$,求實(shí)數(shù)a的值;
(3)問(wèn)是否存在實(shí)數(shù)k,使得直線(xiàn)y=kx+3與圓C交于M,N兩點(diǎn),且以MN為直徑的圓經(jīng)過(guò)坐標(biāo)原點(diǎn)O.若存在,請(qǐng)求出k的值;若不存在,請(qǐng)說(shuō)明理由.
【提示:(3)設(shè)M(x1,y1),N(x2,y2),以MN為直徑的圓經(jīng)過(guò)坐標(biāo)原點(diǎn)O?OM⊥ON?x1x2+y1y2=0】

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

4.如圖,在四棱錐P-ABCD中,底面ABCD是邊長(zhǎng)為2的正方形,PD⊥平面ABCD,M是PC的中點(diǎn),且PD=2
(1)求證:AP∥平面MBD; 
(2)求證:DM⊥BC;
(3)求三棱錐M-BCD的體積.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

3.已知函數(shù)f(x)=ax-a-x(a>0且a≠1).
(1)判斷函數(shù)f(x)的奇偶性;
(2)若a=2,當(dāng)x∈[-1,1]時(shí),f(x)≥m恒成立,求m的取值范圍.
【提示:第(1)問(wèn)利用定義;第(2)問(wèn)先確定f(x)的單調(diào)性,轉(zhuǎn)化為求f(x)的最值】

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

2.某中學(xué)為了了解學(xué)生的課外閱讀情況,隨機(jī)調(diào)查了50名學(xué)生,得到他們?cè)谀骋惶旄髯哉n外閱讀所用時(shí)間的數(shù)據(jù),結(jié)果用圖的條形圖表示.根據(jù)條形圖可得這50名學(xué)生這一天平均每人的課外閱讀時(shí)間為0.97小時(shí).

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

1.已知($\sqrt{x}$-$\frac{a}{x}$)6的展開(kāi)式中含x${\;}^{\frac{3}{2}}}$的項(xiàng)的系數(shù)為30,則實(shí)數(shù)a=-5.

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

20.4log6$\sqrt{3}$+log64=2.

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

19.已知sinα+cosα=$\frac{\sqrt{5}}{5}$,(α∈(-$\frac{π}{2}$,$\frac{π}{2}$)),則cos2α=$\frac{3}{5}$.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

18.已知函數(shù)f(x)=$\frac{1}{2}{x^2}$+x-2lnx(x>0).
(1)求f(x)的單調(diào)區(qū)間;
(2)求函數(shù)f(x)的極值.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

17.若不等式x2+px+q<0的解集是{x|1<x<2}.
(1)求p、q的值;
(2)求不等式$\frac{{{x^2}+px+q}}{{{x^2}-x-6}}$≥0的解集.

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

16.已知θ為△ABC的最小內(nèi)角,O為坐標(biāo)原點(diǎn),向量$\overrightarrow{OM}$=(1,sinθ),向量$\overrightarrow{ON}$=(cosθ,1),則△OMN的面積(  )
A.有最大值$\frac{1}{2}$B.有最小值$\frac{1}{2}$C.有最大值$\frac{1}{4}$D.有最小值$\frac{1}{4}$

查看答案和解析>>

同步練習(xí)冊(cè)答案