相關(guān)習(xí)題
 0  235944  235952  235958  235962  235968  235970  235974  235980  235982  235988  235994  235998  236000  236004  236010  236012  236018  236022  236024  236028  236030  236034  236036  236038  236039  236040  236042  236043  236044  236046  236048  236052  236054  236058  236060  236064  236070  236072  236078  236082  236084  236088  236094  236100  236102  236108  236112  236114  236120  236124  236130  236138  266669 

科目: 來源: 題型:選擇題

7.?dāng)?shù)列{$\frac{1}{{2}^{n}}$+1}的前n項和公式Sn=(  )
A.$\frac{1}{{2}^{n}}$B.n+$\frac{1}{{2}^{n}}$C.n-$\frac{1}{{2}^{n}}$+1D.n2-2n-$\frac{1}{{2}^{n}}$+1

查看答案和解析>>

科目: 來源: 題型:選擇題

6.已知等比數(shù)列{an}中,${a_1}=1,q=\frac{1}{2},{a_n}=\frac{1}{64}$,則項數(shù)n=( 。
A.4B.5C.6D.7

查看答案和解析>>

科目: 來源: 題型:選擇題

5.已知數(shù)列{an}滿足${a_1}=1,{a_2}=1,{a_{n+2}}={a_n}+{a_{n+1}}(n∈{N^*})$,則a6=(  )
A.3B.5C.2D.8

查看答案和解析>>

科目: 來源: 題型:選擇題

4.已知向量$\overrightarrow{a}$=(1,m),$\overrightarrow$=(2,-3),且$\overrightarrow{a}$∥$\overrightarrow$,則m=( 。
A.$\frac{2}{3}$B.-$\frac{2}{3}$C.$\frac{3}{2}$D.-$\frac{3}{2}$

查看答案和解析>>

科目: 來源: 題型:選擇題

3.已知向量$\overrightarrow{a}$,$\overrightarrow$,且|$\overrightarrow{a}$|=1,|$\overrightarrow$|=$\sqrt{2}$,$\overrightarrow{a}$•$\overrightarrow$=2,則|$\overrightarrow{a}$+$\overrightarrow$|=(  )
A.3B.1+$\sqrt{2}$C.7D.$\sqrt{7}$

查看答案和解析>>

科目: 來源: 題型:解答題

2.求值;
(1)sin(-1 200°)cos 1 290°+cos(-1 020°)•sin(-1 050°)
(2)設(shè)$f(α)=\frac{2sin(π+α)cos(3π-α)+cos(4π-α)}{{1+{{sin}^2}α+cos(\frac{3π}{2}+α)-{{sin}^2}(\frac{π}{2}+α)}}(1+2{sin^2}α≠0)$,求$f(-\frac{23π}{6})$.

查看答案和解析>>

科目: 來源: 題型:解答題

1.設(shè)f(x)=ax-1,g(x)=bx-1(a,b>0),記h(x)=f(x)-g(x)
(1)若h(2)=2,h(3)=12,當(dāng)x∈[1,3]時,求h(x)的最大值
(2)a=2,b=1,且方程$|{h(x)}|=t({0<t<\frac{1}{2}})$有兩個不相等實根m,n,求mn的取值范圍
(3)若a=2,h(x)=cx-1(x>1,c>0),且a,b,c是三角形的三邊長,求出x的范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

20.如圖所示的“相鄰塔”形立體建筑,已知P-OAC和Q-OBD是邊長分別為a和$\frac{m}{a}({m是常數(shù)})$的兩個正四面體,底面中AB與CD交于點(diǎn)O,試求出塔尖P,Q之間的距離關(guān)于邊長a的函數(shù),并求出a為多少時,塔尖P,Q之間的距離最短.

查看答案和解析>>

科目: 來源: 題型:解答題

19.?dāng)?shù)列{an}中a1=1,an+1=2an+2.
(1)求證:數(shù)列{an+2}是等比數(shù)列,并求{an}的通項公式;
(2)若bn=n(an+2),求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目: 來源: 題型:解答題

18.設(shè)數(shù)列{an}是公差大于0的等差數(shù)列,Sn為數(shù)列{an}的前n項和.已知S3=9,且2a1,a3-1,a4+1構(gòu)成等比數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)若數(shù)列{bn}滿足bn=$\frac{1}{{{a_n}{a_{n+1}}}}$(n∈N*),設(shè)Tn要是數(shù)列{bn}在前n項和,證明:$\frac{1}{3}$≤Tn<$\frac{1}{2}$.

查看答案和解析>>

同步練習(xí)冊答案