相關(guān)習(xí)題
 0  236978  236986  236992  236996  237002  237004  237008  237014  237016  237022  237028  237032  237034  237038  237044  237046  237052  237056  237058  237062  237064  237068  237070  237072  237073  237074  237076  237077  237078  237080  237082  237086  237088  237092  237094  237098  237104  237106  237112  237116  237118  237122  237128  237134  237136  237142  237146  237148  237154  237158  237164  237172  266669 

科目: 來源: 題型:選擇題

11.設(shè)集合A={x||x-2|≤1},B={x|0<x≤1},則A∪B=( 。
A.(0,3]B.(0,1]C.(-∞,3]D.{1}

查看答案和解析>>

科目: 來源: 題型:填空題

10.過雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的右焦點F作一條直線,當(dāng)直線傾斜角為$\frac{π}{6}$時,直線與雙曲線左、右兩支各有一個交點,當(dāng)直線傾斜角為$\frac{π}{3}$時,直線與雙曲線右支有兩個不同的交點,則雙曲線離心率的取值范圍為($\frac{2\sqrt{3}}{3}$,2).

查看答案和解析>>

科目: 來源: 題型:選擇題

9.已知數(shù)列{an}是等差數(shù)列,a1=tan$\frac{π}{4}$,a5=13a1,設(shè)Sn為數(shù)列{(-1)nan}的前n項和,則S2016=( 。
A.2016B.-2016C.3024D.-3024

查看答案和解析>>

科目: 來源: 題型:解答題

8.已知函數(shù)f($\frac{x}{2}$)=-$\frac{1}{8}$x3+$\frac{m}{4}$x2-m(0<m<20).
(1)討論函數(shù)f(x)在區(qū)間[2,6]上的單調(diào)性;
(2)若曲線y=f(x)僅在兩個不同的點A(x1,f(x1)),B(x2,f(x2))處的切線都經(jīng)過點(2,lg$\frac{1}{a}$),其中a≥1,求m的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

7.已知拋物線C:y2=2px(p>1)的焦點為F,直線y=m與y軸的交點為P,與C的交點為Q(x0,y0),且$\frac{|QF|}{|PQ|}$=p.
(1)當(dāng)x0+p取得最小值時,求p的值;
(2)當(dāng)x0=1時,若直線l與拋物線C相交于A,B兩點,與圓M:(x-n)2+y2=1相交于D,E兩點,O為坐標(biāo)原點,OA⊥OB,試問:是否存在實數(shù)n,使得|DE|的長為定值?若存在,求出n的值;若不存在,請說明理由.

查看答案和解析>>

科目: 來源: 題型:填空題

6.過雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的右焦點F作x軸的垂線,交雙曲線C于M,N兩點,A為左頂點,設(shè)∠MAN=θ,雙曲線C的離心力為f(θ),則f($\frac{2π}{3}$)-f($\frac{π}{3}$)=$\frac{2\sqrt{3}}{3}$.

查看答案和解析>>

科目: 來源: 題型:填空題

5.已知14a=7b=4c=2,則$\frac{1}{a}$-$\frac{1}$+$\frac{1}{c}$=3.

查看答案和解析>>

科目: 來源: 題型:填空題

4.以下是新兵訓(xùn)練時,某炮兵連8周中炮彈對同一目標(biāo)的命中情況的柱狀圖.

由圖可得,該炮兵連這8周中第8周的命中頻率最高.

查看答案和解析>>

科目: 來源:2015-2016學(xué)年河北省保定市高一上學(xué)期期中考試數(shù)學(xué)試卷(解析版) 題型:選擇題

若函數(shù)是R上的單調(diào)遞增函數(shù),則實數(shù)a的取值范圍為( )

A.(1,+∞) B.(1,8) C.(4,8) D.[4,8)

查看答案和解析>>

科目: 來源: 題型:選擇題

3.《數(shù)學(xué)九章》中對已知三角形三邊長求三角形的面積的求法填補了我國傳統(tǒng)數(shù)學(xué)的一個空白,與著名的海倫公式完全等價,由此可以看出我國古代已具有很高的數(shù)學(xué)水平,其求法是:“以小斜冪并大斜冪減中斜冪,余半之,自乘于上.以小斜冪乘大斜冪減上,余四約之,為實.一為從隔,開平方得積.”若把以上這段文字寫成公式,即S=$\sqrt{\frac{1}{4}[{c}^{2}{a}^{2}-(\frac{{c}^{2}+{a}^{2}-^{2}}{2})^{2}]}$.現(xiàn)有周長為2$\sqrt{2}$+$\sqrt{5}$的△ABC滿足sinA:sinB:sinC=($\sqrt{2}$-1):$\sqrt{5}$:($\sqrt{2}$+1),試用以上給出的公式求得△ABC的面積為(  )
A.$\frac{\sqrt{3}}{4}$B.$\frac{\sqrt{3}}{2}$C.$\frac{\sqrt{5}}{4}$D.$\frac{\sqrt{5}}{2}$

查看答案和解析>>

同步練習(xí)冊答案