相關(guān)習(xí)題
 0  237640  237648  237654  237658  237664  237666  237670  237676  237678  237684  237690  237694  237696  237700  237706  237708  237714  237718  237720  237724  237726  237730  237732  237734  237735  237736  237738  237739  237740  237742  237744  237748  237750  237754  237756  237760  237766  237768  237774  237778  237780  237784  237790  237796  237798  237804  237808  237810  237816  237820  237826  237834  266669 

科目: 來源: 題型:填空題

4.已知函數(shù)$f(x)=\left\{\begin{array}{l}-{2^{-x}}+1,x≤0\\ f(x-1),x>0\end{array}\right.$,若方程f(x)=loga(x+2)(0<a<1)有且僅有兩個(gè)不同的實(shí)數(shù)根,則實(shí)數(shù)a的取值范圍為[$\frac{1}{3},\frac{1}{2}$).

查看答案和解析>>

科目: 來源: 題型:解答題

3.在直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),x軸非負(fù)半軸為極軸建立極坐標(biāo)系,直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=1-\frac{\sqrt{2}}{2}t}\\{y=1+\frac{\sqrt{2}}{2}t}\end{array}\right.$(t為參數(shù)),曲線C的極坐標(biāo)方程為ρ=6cosθ
(1)若l的參數(shù)方程中的t=$\sqrt{2}$時(shí),得到M點(diǎn),求M的極坐標(biāo)和曲線C的直角坐標(biāo)方程;
(2)若點(diǎn)P(1,1),l和曲線C交于A,B兩點(diǎn),求$\frac{1}{|PA|}+\frac{1}{|PB|}$.

查看答案和解析>>

科目: 來源: 題型:解答題

2.已知函數(shù)f(x)=ax,g(x)=lnx,(a∈R)
(1)當(dāng)a=1時(shí),求函數(shù)y=$\frac{g(x)}{f(x)}$在點(diǎn)(1,0)處的切線方程;
(2)若在[1,+∞)上不等式xf(x-1)≥g(x)恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

1.設(shè)曲線C1的參數(shù)方程為$\left\{\begin{array}{l}x=t\\ y={t^2}\end{array}\right.$(t為參數(shù)),若以直角坐標(biāo)系的原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線${C_2}:ρsin(θ-\frac{π}{3})=1$
(1)求曲線C1的極坐標(biāo)方程;
(2)若曲線C1與曲線C2相交于A、B,求弦AB的長(zhǎng).

查看答案和解析>>

科目: 來源: 題型:解答題

20.在直角坐標(biāo)系xOy中,直線l1:x=-2,曲線$C:\left\{\begin{array}{l}x=2cosθ\\ y=2+2sinθ\end{array}\right.$(θ為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸建立極坐標(biāo)系.
(1)求直線l1及曲線C的極坐標(biāo)方程;
(2)若直線l2的極坐標(biāo)方程為$θ=\frac{π}{4}$(ρ∈R),設(shè)l2與曲線C的交點(diǎn)為M,N,求△CMN的面積及l(fā)1與l2交點(diǎn)的極坐標(biāo).

查看答案和解析>>

科目: 來源: 題型:填空題

19.已知S,A,B,C是球O表面上的點(diǎn),SA⊥平面ABC,AB⊥BC,AS=AB=1,$BC=\sqrt{3}$,則球O的表面積為5π.

查看答案和解析>>

科目: 來源: 題型:解答題

18.已知直線l過定點(diǎn)P(1,1),且傾斜角為$\frac{π}{4}$,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸的坐標(biāo)系中,曲線C的極坐標(biāo)方程為$ρ=2cosθ+\frac{3}{ρ}$.
(1)求曲線C的直角坐標(biāo)方程與直線l的參數(shù)方程;
(2)若直線l與曲線C相交于不同的兩點(diǎn)A,B,求|AB|及|PA|•|PB|的值.

查看答案和解析>>

科目: 來源: 題型:選擇題

17.已知簡(jiǎn)單組合體的三視圖如圖所示,則此簡(jiǎn)單組合體的體積為( 。
A.$\frac{10π}{3}-4$B.$\frac{10π}{3}-8$C.$\frac{16π}{3}-4$D.$\frac{16π}{3}-8$

查看答案和解析>>

科目: 來源: 題型:解答題

16.已知等邊△AB′C′邊長(zhǎng)為$\sqrt{2}$,△BCD中,$BD=CD=1,BC=\sqrt{2}$(如圖1所示),現(xiàn)將B與B′,C與C′重合,將△AB′C′向上折起,使得$AD=\sqrt{3}$(如圖2所示).
(1)若BC的中點(diǎn)O,求證:平面BCD⊥平面AOD;
(2)在線段AC上是否存在一點(diǎn)E,使ED與面BCD成30°角,若存在,求出CE的長(zhǎng)度,若不存在,請(qǐng)說明理由;
(3)求三棱錐A-BCD的外接球的表面積.

查看答案和解析>>

科目: 來源: 題型:解答題

15.已知△ABC中,角A,B,C的對(duì)邊分別為a,b,c,ccosA=$\frac{4}$且△ABC的面積S≥2.
(1)求A的取值范圍;
(2)求函數(shù)f(x)=cos2A+$\sqrt{3}$sin2($\frac{π}{2}$+$\frac{A}{2}$)-$\frac{\sqrt{3}}{2}$的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案