相關習題
 0  238063  238071  238077  238081  238087  238089  238093  238099  238101  238107  238113  238117  238119  238123  238129  238131  238137  238141  238143  238147  238149  238153  238155  238157  238158  238159  238161  238162  238163  238165  238167  238171  238173  238177  238179  238183  238189  238191  238197  238201  238203  238207  238213  238219  238221  238227  238231  238233  238239  238243  238249  238257  266669 

科目: 來源: 題型:選擇題

4.若雙曲線E:$\frac{x^2}{9}-\frac{y^2}{16}=1$的左右焦點分別為F1,F2,點P在雙曲線E上,且|PF1|=7,則|PF2|等于( 。
A.1B.13C.1或13D.15

查看答案和解析>>

科目: 來源: 題型:填空題

3.設α,β,γ為三個不同的平面,m,n是兩條不同的直線,在命題“α∩β=m,n?γ且(1)或(3),則m∥n”中的橫線處填入下列三組條件中的一組,使該命題為真命題.
(1)α∥γ,n?β; (2)m∥γ,n∥β;(3)n∥β,m?γ.可以填入的條件有(1)或(3).

查看答案和解析>>

科目: 來源: 題型:填空題

2.已知函數f(x)=$\left\{\begin{array}{l}{lo{g}_{2}x,x≥1}\\{x+c,x<1}\end{array}\right.$,則“c=-1”是“函數在R上單調遞增”的充分不必要條件.

查看答案和解析>>

科目: 來源: 題型:選擇題

1.設雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的一個焦點為F,虛軸的一個端點為B,線段BF與雙曲線的一條漸近線交于點A,若$\overrightarrow{FA}=2\overrightarrow{AB}$,則雙曲線的離心率為( 。
A.6B.4C.3D.2

查看答案和解析>>

科目: 來源: 題型:解答題

20.已知$f(α)=\frac{{sin({π+α})cos({2π-α})tan({-α})}}{{tan({-π-α})cos({\frac{3π}{2}+α})}}$.
(1)化簡f(α);
(2)當$α=-\frac{31π}{3}$時,求f(α)的值;
(3)若α是第三象限的角,且$sinα=-\frac{1}{5}$,求f(α)的值.

查看答案和解析>>

科目: 來源: 題型:選擇題

19.下面四個推理不是合情推理的是( 。
A.由圓的性質類比推出球的有關性質
B.由直角三角形、等腰三角形、等邊三角形的內角和都是180°,歸納出所有三角形的內角和都是180°
C.某次考試張軍的成績是100分,由此推出全班同學的成績都是100分
D.蛇、海龜、蜥蜴是用肺呼吸的,蛇、海龜、蜥蜴是爬行動物,所以所有的爬行動物都是用肺呼吸的

查看答案和解析>>

科目: 來源: 題型:解答題

18.已知f(x)=3sin(2x+$\frac{π}{4}$)-1.
(1)f(x)的圖象是由y=sin x的圖象如何變換而來?
(2)求f(x)的最小正周期、圖象的對稱軸方程、最大值及其對應的x的值.

查看答案和解析>>

科目: 來源: 題型:解答題

17.(1)計算 $\frac{\sqrt{3}sin(-\frac{20}{3}π)}{tan\frac{11}{3}π}$-cos$\frac{13}{4}$π•tan(-$\frac{37}{4}$π).
(2)已知tan α=$\frac{4}{3}$,求下列各式的值:①$\frac{sin2α+2sinαcosα}{2cos2α-sin2α}$;②sin αcos α.

查看答案和解析>>

科目: 來源: 題型:選擇題

16.△ABC的內角A,B,C的對邊分別是a,b,c,滿足a2+bc≤b2+c2,則角A的范圍是( 。
A.$(0,\frac{π}{6}]$B.$(0,\frac{π}{3}]$C.$[\frac{π}{6},π)$D.$[\frac{π}{3},π)$

查看答案和解析>>

科目: 來源: 題型:選擇題

15.如果$\overrightarrow{e_1}$,$\overrightarrow{e_2}$是平面內所有向量的一組基底,那么( 。
A.該平面內存在一向量$\overrightarrow a$不能表示$\overrightarrow a=m\overrightarrow{e_1}+n\overrightarrow{e_2}$,其中m,n為實數
B.若向量$m\overrightarrow{e_1}+n\overrightarrow{e_2}$與$\overrightarrow a$共線,則存在唯一實數λ使得$m\overrightarrow{e_1}+n\overrightarrow{e_2}=λ\overrightarrow a$
C.若實數m,n使得$m\overrightarrow{e_1}+n\overrightarrow{e_2}=\overrightarrow 0$,則m=n=0
D.對平面中的某一向量$\overrightarrow a$,存在兩對以上的實數m,n使得$\overrightarrow a=m\overrightarrow{e_1}+n\overrightarrow{e_2}$

查看答案和解析>>

同步練習冊答案