相關(guān)習(xí)題
 0  238641  238649  238655  238659  238665  238667  238671  238677  238679  238685  238691  238695  238697  238701  238707  238709  238715  238719  238721  238725  238727  238731  238733  238735  238736  238737  238739  238740  238741  238743  238745  238749  238751  238755  238757  238761  238767  238769  238775  238779  238781  238785  238791  238797  238799  238805  238809  238811  238817  238821  238827  238835  266669 

科目: 來(lái)源: 題型:解答題

2.一個(gè)游戲的規(guī)則如下:拋擲一枚質(zhì)地均勻的骰子,若朝上的點(diǎn)數(shù)是1,則你贏t元;若點(diǎn)數(shù)是2,3或者4,則你輸2元;若點(diǎn)數(shù)是5或者6,則不輸不贏.
(1)若t=4,你(玩家)連續(xù)玩了三次游戲,求你不輸錢的概率;
(2)如果玩一次游戲要對(duì)你(玩家)有利,求t的取值范圍.

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

1.函數(shù)f(x)=x3-3x2+2在區(qū)間[-1,1]上最大值為M,最小值為m,則M-m的值為( 。
A.2B.-4C.4D.-2

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

10.已知函數(shù)f(x)=ax3+|x-a|,a∈R.
(Ⅰ)若a=-1,求函數(shù)y=f(x)在[0,+∞)的單調(diào)區(qū)間;
(Ⅱ)方程f(x)=x4有3個(gè)不同的實(shí)根,求實(shí)數(shù)a的取值范圍;
(Ⅲ)當(dāng)a>0時(shí),若對(duì)于任意的x1∈[a,a+1],都存在x2∈[a+1,+∞],使得f(x1)f(x2)=1024,求滿足條件的正整數(shù)a的取值的集合.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

9.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)與y軸交于B1,B2兩點(diǎn),F(xiàn)1為橢圓C的左焦點(diǎn),且△F1B1B2是邊長(zhǎng)為2的等邊三角形.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)直線x=my+1與橢圓C交于P,Q兩點(diǎn),點(diǎn)P關(guān)于x軸的對(duì)稱點(diǎn)為P1(P1與Q不重合),則直線P1Q與x軸交于點(diǎn)H,求△PQH面積的取值范圍.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

8.如圖,點(diǎn)P是菱形ABCD所在平面外一點(diǎn),∠BAD=60°,△PCD是等邊三角形,AB=2,PA=2$\sqrt{2}$,M是PC的中點(diǎn).
(Ⅰ)求證:PA∥平面BDM;
(Ⅱ)求證:平面PAC⊥平面BDM;
(Ⅲ)求直線BC與平面BDM的所成角的大。

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

7.某鋼廠打算租用A,B兩種型號(hào)的火車車皮運(yùn)輸900噸鋼材,A,B兩種車皮的載貨量分別為36噸和60噸,租金分別為1.6萬(wàn)元/個(gè)和2.4元/個(gè),鋼廠要求租車皮總數(shù)不超過(guò)21個(gè),且B型車皮不多于A型車皮7個(gè),分別用x,y表示租用A,B兩種車皮的個(gè)數(shù).
(Ⅰ)用x,y列出滿足條件的數(shù)學(xué)關(guān)系式,并畫出相應(yīng)的平面區(qū)域;
(Ⅱ)分別租用A,B兩種車皮的個(gè)數(shù)是多少,才能使得租金最少?并求出此最小租金.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

6.在△ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,若b=c,2sinB=$\sqrt{3}$sinA.
(Ⅰ)求sinB的值;
(Ⅱ)求cos(2B+$\frac{π}{3}$)的值.

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

5.函數(shù)f(x)的定義域?yàn)閷?shí)數(shù)集R,f(x)=$\left\{\begin{array}{l}{(\frac{1}{2})^{x}-1,-1≤x≤0}\\{lnx+1,0<x<3}\end{array}\right.$對(duì)于任意的x∈R,f(x+2)=f(x-2),若在區(qū)間[0,4]上函數(shù)g(x)=f(x)-mx恰有三個(gè)不同的零點(diǎn),則實(shí)數(shù)m的取值范圍[0,$\frac{1}{3}$]∪($\frac{ln3+1}{3}$,1).

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

4.若x>0,y>0,且$\frac{1}{2x+y}$+$\frac{2}{x+y}$=2,則4x+3y的最小值為$\frac{9}{2}$.

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

3.已知兩圓x2+y2=10和(x-1)2+(y-a)2=20相交于A、B兩個(gè)不同的點(diǎn),且直線AB與直線3x-y+1=0垂直,則實(shí)數(shù)a=3.

查看答案和解析>>

同步練習(xí)冊(cè)答案