相關(guān)習(xí)題
 0  239246  239254  239260  239264  239270  239272  239276  239282  239284  239290  239296  239300  239302  239306  239312  239314  239320  239324  239326  239330  239332  239336  239338  239340  239341  239342  239344  239345  239346  239348  239350  239354  239356  239360  239362  239366  239372  239374  239380  239384  239386  239390  239396  239402  239404  239410  239414  239416  239422  239426  239432  239440  266669 

科目: 來源: 題型:選擇題

20.已知i是虛數(shù)單位,若z(1+i)=1+3i,則$\overline z$=( 。
A.2-iB.2+iC.-1+iD.-1-i

查看答案和解析>>

科目: 來源: 題型:選擇題

19.集合A={x|y=lg(x-2)},B={y|y=2x,x≥0},則(∁RA)∩B=( 。
A.(0,2)B.[0,2]C.[1,2]D.(1,2)

查看答案和解析>>

科目: 來源: 題型:解答題

18.已知四棱錐S-ABCD的底面為平行四邊形,且SD⊥面ABCD,AB=2AD=2SD,∠DCB=60°,M、N分別為SB、SC中點,過MN作平面MNPQ分別與線段CD、AB相交于點P、Q.
(Ⅰ)在圖中作出平面MNPQ使面MNPQ‖面SAD(不要求證明);
( II)若$|{\overrightarrow{AB}}|=4$,在(Ⅰ)的條件下求多面體MNCBPQ的體積.

查看答案和解析>>

科目: 來源: 題型:填空題

17.已知△ABC中,AC=4,BC=2$\sqrt{7},∠BAC=\frac{π}{3}$,則AB的長為6.

查看答案和解析>>

科目: 來源: 題型:填空題

16.已知向量$\overrightarrow a,\overrightarrow b$的夾角為$\frac{5π}{6},|{\overrightarrow a}|=2,|{\overrightarrow b}|=\sqrt{3}$,則$\overrightarrow a•({2\overrightarrow b-\overrightarrow a})$=-10.

查看答案和解析>>

科目: 來源: 題型:選擇題

15.已知f(x)=alnx-x2在區(qū)間(0,1)內(nèi)任取兩個不相等的實數(shù)p、q,不等式$\frac{f(p)-f(q)}{p-q}>1$恒成立,則實數(shù)a的取值范圍為(  )
A.(3,5)B.(-∞,0)C.(3,5]D.[3,+∞)

查看答案和解析>>

科目: 來源: 題型:解答題

14.在直角坐標系中,以原點為極點,x軸正半軸為極軸建立坐標系,直線l的極坐標方程為$ρcos({θ+\frac{π}{4}})=\frac{{\sqrt{2}}}{2}$,曲線C的參數(shù)方程為$\left\{\begin{array}{l}{x=5+cosθ}\\{y=sinθ}\end{array}\right.$,(θ為參數(shù)).
(Ⅰ)求直線l的直角坐標方程和曲線C的普通方程;
(Ⅱ)曲線C交x軸于A、B兩點,且點xA<xB,P為直線l上的動點,求△PAB周長的最小值.

查看答案和解析>>

科目: 來源: 題型:解答題

13.已知函數(shù)f(x)=x-alnx,a∈R.
(Ⅰ)研究函數(shù)f(x)的單調(diào)性;
(Ⅱ)設(shè)函數(shù)f(x)有兩個不同的零點x1、x2,且x1<x2
(1)求a的取值范圍;               
(2)求證:x1x2>e2

查看答案和解析>>

科目: 來源: 題型:解答題

12.如圖,橢圓E的左右頂點分別為A、B,左右焦點分別為F1、F2,|AB|=4,|F1F2|=2$\sqrt{3}$,直線y=kx+m(k>0)交橢圓于C、D兩點,與線段F1F2及橢圓短軸分別交于M、N兩點(M、N不重合),且|CM|=|DN|.
(Ⅰ)求橢圓E的離心率;
(Ⅱ)若m>0,設(shè)直線AD、BC的斜率分別為k1、k2,求$\frac{k_1}{k_2}$的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

11.已知四棱錐S-ABCD的底面為平行四邊形,且SD⊥面ABCD,AB=2AD=2SD,∠DCB=60°,M,N分別為SB,SC中點,過MN作平面MNPQ分別與線段CD,AB相交于點P,Q.
(Ⅰ)在圖中作出平面MNPQ,使面MNPQ‖面SAD(不要求證明);
(Ⅱ)若$\overrightarrow{AQ}=λ\overrightarrow{AB}$,是否存在實數(shù)λ,使二面角M-PQ-B的平面角大小為60°?若存在,求出的λ值,若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案