相關(guān)習(xí)題
 0  239513  239521  239527  239531  239537  239539  239543  239549  239551  239557  239563  239567  239569  239573  239579  239581  239587  239591  239593  239597  239599  239603  239605  239607  239608  239609  239611  239612  239613  239615  239617  239621  239623  239627  239629  239633  239639  239641  239647  239651  239653  239657  239663  239669  239671  239677  239681  239683  239689  239693  239699  239707  266669 

科目: 來源: 題型:解答題

16.某商品在銷售過程中投入的銷售時間x與銷售額y的統(tǒng)計數(shù)據(jù)如下表:
銷售時間x(月)12345
銷售額y(萬元)0.40.50.60.60.4
用線性回歸分析的方法預(yù)測該商品6月份的銷售額.
(參考公式:$\widehat$=$\frac{{\sum_{i=1}^n{\;}({x_i}-_x^-)({y_i}-_y^-)}}{{\sum_{i=1}^n{\;}{{({x_i}-_x^-)}^2}}}$,$\widehat{a}$=$\overline{y}$-$\widehat$$\overline{x}$,其中$\overline{x}$,$\overline{y}$表示樣本平均值)

查看答案和解析>>

科目: 來源: 題型:填空題

15.設(shè)向量$\overrightarrow a=(-1,3)$,$\overrightarrow b=(2,x)$,若$\overrightarrow a⊥\overrightarrow b$,則x=$\frac{2}{3}$.

查看答案和解析>>

科目: 來源: 題型:選擇題

14.將函數(shù)y=sin2x的圖象向右平移$\frac{π}{6}$個單位,得到函數(shù)y=f(x)的圖象,則f(x)=( 。
A.$cos(2x-\frac{π}{6})$B.$sin(2x-\frac{π}{6})$C.$cos(2x-\frac{π}{3})$D.$sin(2x-\frac{π}{3})$

查看答案和解析>>

科目: 來源: 題型:選擇題

13.設(shè)向量$\overrightarrow{AB}=(1,2)$,$\overrightarrow{BC}=(-2,t)$,且$\overrightarrow{AB}•\overrightarrow{AC}=2$,則實數(shù)t的值為(  )
A.$\frac{3}{2}$B.$-\frac{3}{2}$C.$\frac{1}{2}$D.$-\frac{1}{2}$

查看答案和解析>>

科目: 來源: 題型:選擇題

12.若角α的終邊經(jīng)過點(α,-1),且$tanα=-\frac{1}{2}$,則α=( 。
A.$\sqrt{5}$B.$-\sqrt{5}$C.2D.-2

查看答案和解析>>

科目: 來源: 題型:填空題

11.將4位大學(xué)生分配到A,B,C三個工廠參加實習(xí)活動,其中A工廠只能安排1位大學(xué)生,其余工廠至少安排1位大學(xué)生,且甲同學(xué)不能分配到C工廠,則不同的分配方案種數(shù)是12.

查看答案和解析>>

科目: 來源: 題型:選擇題

10.函數(shù)$f(x)={2^x}+xln\frac{1}{4}$在區(qū)間[-2,2]上的最大值為(  )
A.$\frac{1}{4}+4ln2$B.4(1-ln2)C.2(1-ln2)D.4(2ln2-1)

查看答案和解析>>

科目: 來源: 題型:填空題

9.已知數(shù)列{an}中,a1=0,a2=p(p是不等于0的常數(shù)),Sn為數(shù)列{an}的前n項和,若對任意的正整數(shù)n都有Sn=$\frac{n{a}_{n}}{2}$,則數(shù)列{an}通項為an=p(n-1)..

查看答案和解析>>

科目: 來源: 題型:選擇題

8.數(shù)列{an}的通項公式an=ncos$\frac{nπ}{2}$,其前n項和為Sn,則S2013等于(  )
A.1006B.2012C.503D.0

查看答案和解析>>

科目: 來源: 題型:選擇題

7.已知函數(shù)f(x)=f?($\frac{π}{4}$)cosx+sinx,則f($\frac{3π}{4}$)=( 。
A.$\sqrt{2}$B.$\sqrt{2}$-1C.1D.0

查看答案和解析>>

同步練習(xí)冊答案