相關(guān)習(xí)題
 0  239779  239787  239793  239797  239803  239805  239809  239815  239817  239823  239829  239833  239835  239839  239845  239847  239853  239857  239859  239863  239865  239869  239871  239873  239874  239875  239877  239878  239879  239881  239883  239887  239889  239893  239895  239899  239905  239907  239913  239917  239919  239923  239929  239935  239937  239943  239947  239949  239955  239959  239965  239973  266669 

科目: 來源: 題型:填空題

8.若實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}{2x-y≤2}\\{x-y≥-1}\\{x+y≥1}\end{array}\right.$,則2x+y的最小值為1.

查看答案和解析>>

科目: 來源: 題型:填空題

7.在平面直角坐標(biāo)系xOy中,若雙曲線$\frac{{x}^{2}}{2}$-$\frac{{y}^{2}}{m}$=1(m>0)的離心率為$\frac{\sqrt{6}}{2}$,則該雙曲線的兩條漸近線方程是y=±$\sqrt{2}$x.

查看答案和解析>>

科目: 來源: 題型:填空題

6.若復(fù)數(shù)z=$\frac{-i}{1+2i}$(i是虛數(shù)單位),則z的實(shí)部為$-\frac{2}{5}$.

查看答案和解析>>

科目: 來源: 題型:選擇題

5.如圖,某幾何體的三視圖是三個(gè)半徑相等的圓及每個(gè)圓中兩條相互垂直的半徑,若該幾何體的體積是$\frac{28π}{3}$,則三視圖中圓的半徑為( 。
A.2B.3C.4D.6

查看答案和解析>>

科目: 來源: 題型:解答題

4.下表提供了某公司技術(shù)升級(jí)后生產(chǎn)A產(chǎn)品過程中記錄的產(chǎn)量x(噸)與相應(yīng)的成本y(萬元)的幾組對(duì)照數(shù)據(jù):
x3456
y2.5344.5
(1)請(qǐng)畫出上表數(shù)據(jù)的散點(diǎn)圖;
(2)請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y對(duì)x的回歸直線方程;
(3)已知該公司技術(shù)升級(jí)前生產(chǎn)100噸A產(chǎn)品的成本為90萬元.試根據(jù)(2)求出的回歸直線方程,預(yù)測(cè)技術(shù)升級(jí)后生產(chǎn)100噸A產(chǎn)品的成本比技術(shù)升級(jí)前約降低多少萬元?
(附:$\widehat$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{1}}^{2}-n{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat$$\overline{x}$,其中$\overline{x}$,$\overline{y}$為樣本平均值)

查看答案和解析>>

科目: 來源: 題型:填空題

3.在非直角△ABC中,D為BC上的中點(diǎn),且$\frac{\overrightarrow{CA}•\overrightarrow{CB}}{{S}_{△CAB}}$=4$\frac{{S}_{△ABD}}{\overrightarrow{AB}•\overrightarrow{AD}}$,E為邊AC上一點(diǎn),2$\overrightarrow{BE}$=$\overrightarrow{BA}$+$\overrightarrow{BC}$,BE=2,則△ABC的面積的最大值為$\frac{8}{3}$.(其中S△ABC表示△ABC的面積)

查看答案和解析>>

科目: 來源: 題型:填空題

2.已知圓E:x2+y2-2x=0,若A為直線l:x+y+m=0上的點(diǎn),過點(diǎn)A可作兩條直線與圓E分別切于點(diǎn)B,C,且△ABC為正三角形,則實(shí)數(shù)m的取值范圍是[-2$\sqrt{2}-1$,2$\sqrt{2}-1$].

查看答案和解析>>

科目: 來源: 題型:解答題

1.在直角坐標(biāo)系中,直線l過定點(diǎn)(-1,0),且傾斜角為α(0<α<π),以坐標(biāo)原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸,建立極坐標(biāo)系,已知曲線C的極坐標(biāo)方程為ρ=cosθ(ρcosθ+8).
(1)寫出l的參數(shù)方程和C的直角坐標(biāo)方程;
(2)若直線l與曲線C交于A,B兩點(diǎn),且$|AB|=8\sqrt{10}$,求α的值.

查看答案和解析>>

科目: 來源: 題型:解答題

20.已知函數(shù)f(x)=ax-e(x+1)lna-$\frac{1}{a}$(a>0,且a≠1),e為自然對(duì)數(shù)的底數(shù).
(1)當(dāng)a=e時(shí),求函數(shù)y=f(x)在區(qū)間x∈[0,2]上的最大值
(2)若函數(shù)f(x)只有一個(gè)零點(diǎn),求a的值.

查看答案和解析>>

科目: 來源: 題型:解答題

19.已知直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=1+t}\\{y=1+2t}\end{array}\right.$(t為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立直角坐標(biāo)系,曲線C的極坐標(biāo)方程是ρ2=$\frac{4}{1+3si{n}^{2}θ}$.
(Ⅰ)寫出直線l的普通方程與曲線C的直角坐標(biāo)方程;
(Ⅱ)求直線l被曲線C截得的弦長.

查看答案和解析>>

同步練習(xí)冊(cè)答案