相關(guān)習(xí)題
 0  240053  240061  240067  240071  240077  240079  240083  240089  240091  240097  240103  240107  240109  240113  240119  240121  240127  240131  240133  240137  240139  240143  240145  240147  240148  240149  240151  240152  240153  240155  240157  240161  240163  240167  240169  240173  240179  240181  240187  240191  240193  240197  240203  240209  240211  240217  240221  240223  240229  240233  240239  240247  266669 

科目: 來(lái)源: 題型:解答題

16.已知復(fù)數(shù)z=bi(b∈R),$\frac{z-2}{1+i}$是實(shí)數(shù),i是虛數(shù)單位.
(1)求復(fù)數(shù)z;
(2)求$|{\frac{1-z}{2+i}}|$
(3)若復(fù)數(shù)(m+z)2所表示的點(diǎn)在第一象限,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

15.(1)若函數(shù)f(x)=x3+bx2+cx+d的單調(diào)遞減區(qū)間(-1,2)求b,c的值;
(2)設(shè)$f(x)=-\frac{1}{3}{x^3}+\frac{1}{2}{x^2}+2ax$,若f(x)在$(\frac{2}{3},+∞)$上存在單調(diào)遞增區(qū)間,求a的取值范圍;
(3)已知函數(shù)f(x)=alnx-ax-3(a∈R),若函數(shù)y=f(x)的圖象在點(diǎn)(2,f(2))處的切線的傾斜角為45°,對(duì)于任意t∈[1,2],函數(shù)g(x)=x3+x2[f′(x)+$\frac{m}{2}$]在區(qū)間(t,3)上總不是單調(diào)函數(shù),求m的取值范圍.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

14.已知函數(shù)f(x)=max+a2x-1,(a>0且a≠1,m∈R).
(1)若a=$\frac{1}{2}$,m=1時(shí),試判定函數(shù)y=f(x)的單調(diào)性;
(2)當(dāng)m=2時(shí),函數(shù)y=f(x)在區(qū)間x∈[-1,1]上的最大值是14,求實(shí)數(shù)a的值.

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

13.不等式|x-1|-|x+1|≥a有解,則a的取值范圍為(-∞,2].

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

12.△ABC外接圓的半徑為1,圓心為O,$3\overrightarrow{OA}+4\overrightarrow{OB}+5\overrightarrow{OC}=\overrightarrow 0$,則$\overrightarrow{OC}•\overrightarrow{AB}$=-$\frac{1}{5}$.

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

11.點(diǎn)M(1,1)到拋物線y=ax2的準(zhǔn)線的距離是2,則a=$\frac{1}{4}$或-$\frac{1}{12}$.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

10.求函數(shù)f(x)=sinx+x2+cosx在區(qū)間(-π,π)上的平均變化率.

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

9.已知正三角形ABC的邊長(zhǎng)為2,點(diǎn)D是邊BC上一動(dòng)點(diǎn),點(diǎn)D到AB、AC的距離分別為x、y,則xy的最大值為$\frac{3}{4}$.

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

8.已知sinx+cosy=$\frac{3}{5}$,則μ=sinx-cos2y的最大值為$\frac{21}{25}$.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

7.橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左頂點(diǎn)到右焦點(diǎn)的距離為$\sqrt{3}$+$\sqrt{2}$,橢圓上的點(diǎn)到右焦點(diǎn)的距離的最小值為$\sqrt{3}$-$\sqrt{2}$.
(1)求橢圓C的方程;
(2)設(shè)斜率為1的直線l經(jīng)過(guò)橢圓上頂點(diǎn),并與橢圓交于A,B兩點(diǎn),求|AB|.

查看答案和解析>>

同步練習(xí)冊(cè)答案