相關(guān)習(xí)題
 0  240443  240451  240457  240461  240467  240469  240473  240479  240481  240487  240493  240497  240499  240503  240509  240511  240517  240521  240523  240527  240529  240533  240535  240537  240538  240539  240541  240542  240543  240545  240547  240551  240553  240557  240559  240563  240569  240571  240577  240581  240583  240587  240593  240599  240601  240607  240611  240613  240619  240623  240629  240637  266669 

科目: 來源: 題型:填空題

19.已知10件產(chǎn)品中有3件次品,若任意抽取3件進(jìn)行檢驗,則其中至少有一件次品的概率是$\frac{17}{24}$.

查看答案和解析>>

科目: 來源: 題型:選擇題

18.函數(shù)$f(x)=4{sin^2}\frac{x}{2}sin({x-\frac{π}{2}})+2cosx-1-|{lg({x+1})}|$的零點個數(shù)為( 。
A.5B.6C.7D.9

查看答案和解析>>

科目: 來源: 題型:選擇題

17.現(xiàn)有10個數(shù),它們能構(gòu)成一個以2為首項,-2為公比的等比數(shù)列,若從這10個數(shù)中隨機(jī)抽取一個數(shù),則它小于8的概率是( 。
A.$\frac{1}{10}$B.$\frac{1}{2}$C.$\frac{3}{5}$D.$\frac{7}{10}$

查看答案和解析>>

科目: 來源: 題型:選擇題

16.下列說法正確的是(  )
A.“x<1”是“l(fā)og2(x+1)<1”的充分不必要條件
B.命題“?x>0,2x>1”的否定是,“?x0≤0,${2}^{{x}_{0}}$≤1”
C.命題“若a≤b,則ac2≤bc2”的逆命題是真命題
D.命題“若a+b≠5,則a≠2或b≠3”的逆否命題為真命題

查看答案和解析>>

科目: 來源: 題型:選擇題

15.已知函數(shù)f(x)=aln(x+1)-x2在區(qū)間(0,1)內(nèi)任取兩個實數(shù)p,q,且p≠q,不等式$\frac{{f({p+1})-f({q+1})}}{p-q}>1$恒成立,則實數(shù)a的取值范圍為(  )
A.[15,+∞)B.$[{-\frac{1}{8},+∞})$C.[1,+∞)D.[6,+∞)

查看答案和解析>>

科目: 來源: 題型:填空題

14.已知函數(shù)f(x)=$\sqrt{2-{x^2}}$-x+b有一個零點,則實數(shù)b的取值范圍為{2}∪($-\sqrt{2}$,$\sqrt{2}$].

查看答案和解析>>

科目: 來源: 題型:解答題

13.已知橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的左、右焦點分別為F1,F(xiàn)2,離心率為$\frac{{\sqrt{2}}}{2}$,短軸上的兩個頂點為A,B(A在B的上方),且四邊形AF1BF2的面積為8.
(1)求橢圓C的方程;
(2)設(shè)動直線y=kx+4與橢圓C交于不同的兩點M,N,直線y=1與直線BM交于點G,求證:A,G,N三點共線.

查看答案和解析>>

科目: 來源: 題型:解答題

12.已知函數(shù)f(x)=$\frac{2}{x}$+alnx-2,曲線y=f(x)在點P(1,f(1))處的切線與直線y=x+3垂直.
(1)求實數(shù)a的值;
(2)記g(x)=f(x)+x-b(b∈R),若函數(shù)g(x)在區(qū)間[e-1,e]上有兩個零點,求實數(shù)b的取值范圍;
(3)若不等式πf(x)>($\frac{1}{π}$)1+x-lnx在|t|≤2時恒成立,求實數(shù)x的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

11.隨機(jī)調(diào)查某社區(qū)80個人,以研究這一社區(qū)居民的休閑方式是否與性別有關(guān),得到下面的數(shù)據(jù)表:
休閑方式
性別
看電視運動合計
男性201030
女性45550
合計651580
(1)將此樣本的頻率估計為總體的概率,隨機(jī)調(diào)查3名在該社區(qū)的男性,設(shè)調(diào)查的3人是以運動為休閑方式的人數(shù)為隨機(jī)變量X,求X的分布列和期望;
(2)根據(jù)以上數(shù)據(jù),能否有99%的把握認(rèn)為休閑方式與性別有關(guān)系?
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
(參考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$),其中n=a+b+c+d)

查看答案和解析>>

科目: 來源: 題型:解答題

10.已知函數(shù)f(x)=x3-3x2-9x+2.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)求函數(shù)f(x)在區(qū)間[-1,m](m>-1)的最小值.

查看答案和解析>>

同步練習(xí)冊答案