5.函數(shù)f(x)是R上的減函數(shù),f(1)=0,則不等式f(x-1)<0的解集為{x|x<2}.

分析 根據(jù)函數(shù)單調(diào)性的性質(zhì),將不等式關(guān)系進(jìn)行轉(zhuǎn)化即可得到結(jié)論.

解答 解:∵y=f(x)為R上的減函數(shù),且f(1)=0,
∴不等式f(x-1)<0等價(jià)為f(x-1)<f(1),
則x-1<1,即x<2,
即不等式的解集為{x|x<2},
故答案為{x|x<2}.

點(diǎn)評(píng) 本題主要考查不等式的求解,利用函數(shù)的單調(diào)性是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知點(diǎn)A=(0,1,1),B=(1,2,1),C=(1,1,2),則$\overrightarrow{AB}$與$\overrightarrow{AC}$的夾角為(  )
A.$\frac{π}{2}$B.$\frac{π}{3}$C.$\frac{π}{6}$D.$\frac{π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知拋物線經(jīng)過點(diǎn)B(-1,0)、C(3,0),交y軸于點(diǎn)A(0,3).
(1)求此拋物線的解析式;
(2)拋物線第一象限上有一動(dòng)點(diǎn)M,過點(diǎn)M作MN⊥x軸,垂足為N,請(qǐng)求出MN+2ON的最大值,及此時(shí)點(diǎn)M坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的短軸長(zhǎng)為2,離心率為$\frac{\sqrt{6}}{3}$,直線l過點(diǎn)(-1,0)交橢圓E于A、B兩點(diǎn),O為坐標(biāo)原點(diǎn).
(1)求橢圓E的方程;
(2)求△OAB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.設(shè)符號(hào)[x]表示不超過x的最大整數(shù),如[${\sqrt{3}}$]=1,[-$\sqrt{2}}$]=-2,又實(shí)數(shù)x、y滿足方程組$\left\{{\begin{array}{l}{y=3[x]+2}\\{y=[x]+4}\end{array}}$,則4x-y的取值范圍( 。
A.[-1,3)B.(6,7]C.[6,7)D.[9,13)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知集合A={-1,a},B={3a,b},若A∪B={-1,0,1},則a=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知函數(shù)f(x)=ax3-bx+1,若f(-2)=3,則f(2)=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.(1)圖中的圖象所表示的函數(shù)的解析式;
(2)△AOB為邊長(zhǎng)為2的等邊三角形,設(shè)直線x=t截這個(gè)三角形所得的位于直線左方的圖形面積為S,求S=f(t)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.函數(shù)$f(x)=sin({5x+\frac{π}{6}})$,x∈R.的初相為$\frac{π}{6}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案