題目列表(包括答案和解析)

 0  445817  445825  445831  445835  445841  445843  445847  445853  445855  445861  445867  445871  445873  445877  445883  445885  445891  445895  445897  445901  445903  445907  445909  445911  445912  445913  445915  445916  445917  445919  445921  445925  445927  445931  445933  445937  445943  445945  445951  445955  445957  445961  445967  445973  445975  445981  445985  445987  445993  445997  446003  446011  447348 

5.在中,,則等于┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄(   )

    A.        B.        C.          D.

試題詳情

4.若定義在區(qū)間內(nèi)的函數(shù)滿足,則實(shí)數(shù)的取值范圍為(  )

    A.       B.       C.       D.

試題詳情

3.已知函數(shù),那么 的值為┄┄┄┄┄┄┄┄┄┄┄┄┄┄(   )

    A.9          B.         C.        D.

試題詳情

2.條件,條件,則的┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄(   )

A.充分但不必要條件             B.必要但不充分條件  

C.充分且必要條件              D.既不充分也不必要條件

試題詳情

1.已知,則集合中元素的個(gè)數(shù)是┄┄(   )

      A.         B.        C.         D.不確定

試題詳情

18.已知△ABC中,三個(gè)內(nèi)角是A、B、C的對(duì)邊分別是a、bc,其中c=10,且

     (I)求證:△ABC是直角三角形;(II)設(shè)圓O過(guò)A、BC三點(diǎn),點(diǎn)P位于劣弧AC上,∠PAB=60°,.求四邊形ABCP的面積.

解:(Ⅰ)證明:根據(jù)正弦定理得,

整理為,sinAcosA=sinBcosB,即sin2A=sin2B.

∴2A=2B或2A+2B=  ∴.

  ∴舍去A=B.  ∴.故△ABC是直角三角形.

(Ⅱ)解:由(1)可得:a=6,b=8.在Rt△ACB中,

==

連結(jié)PB,在Rt△APB中,AP=AB·cos∠PAB=5.

∴四邊形ABCP的面積=24+=18+.

19已知集合.(1)求;(2)若以為首項(xiàng),為公比的等比數(shù)列前項(xiàng)和記為,對(duì)于任意的,均有,求的取值范圍.

[解析](1)由

當(dāng)時(shí),.當(dāng)時(shí), ,當(dāng)時(shí),.綜上,時(shí),;時(shí),;當(dāng)時(shí),

(2)當(dāng)時(shí),.而,故時(shí),不存在滿足條件的

當(dāng)時(shí),,而是關(guān)于的增函數(shù),所以的增大而增大,當(dāng)且無(wú)限接近時(shí),對(duì)任意的,,只須滿足 解得. 當(dāng)時(shí),.顯然,故不存在實(shí)數(shù)滿足條件.  當(dāng)時(shí),,適合.當(dāng)時(shí),

,

,且

故只需 解得.綜上所述,的取值范圍是

20設(shè)一動(dòng)點(diǎn)M在x軸正半軸上,過(guò)動(dòng)點(diǎn)M與定點(diǎn)的直線交y=x(x>0)于點(diǎn)Q,動(dòng)點(diǎn)M在什么位置時(shí),有最大值,并求出這個(gè)最大值.

[解析] 設(shè),要它與相交,則

    令,令,得. ∴

   ∴于是.由,∴.而當(dāng)l的方程為x=2時(shí),u=2, ∴對(duì)應(yīng)得k=-2,

不管什么時(shí)候,自己才是自己的天使,要笑著去面對(duì)生活!記住陽(yáng)光總在風(fēng)雨后,高考過(guò)后,你的天空會(huì)是另一番的精彩!

試題詳情

17.設(shè)無(wú)窮數(shù)列{an}具有以下性質(zhì):①a1=1;②當(dāng)(Ⅰ)請(qǐng)給出一個(gè)具有這種性質(zhì)的無(wú)窮數(shù)列,使得不等式 對(duì)于任意的都成立,并對(duì)你給出的結(jié)果進(jìn)行驗(yàn)證(或證明);(Ⅱ)若,其中,且記數(shù)列{bn}的前n項(xiàng)和Bn,證明:

解:(Ⅰ)令,則無(wú)窮數(shù)列{an}可由a1 = 1,給出.

   顯然,該數(shù)列滿足,且  

  (Ⅱ)  又

       

試題詳情

15.已知O為坐標(biāo)原點(diǎn),點(diǎn)E、F的坐標(biāo)分別為(-1,0)、(1,0),動(dòng)點(diǎn)A、M、N滿足(),,,.(Ⅰ)求點(diǎn)M的軌跡W的方程;(Ⅱ)點(diǎn)在軌跡W上,直線PF交軌跡W于點(diǎn)Q,且,若,求實(shí)數(shù)的范圍.

解:(Ⅰ)∵,,∴ MN垂直平分AF.又,∴ 點(diǎn)M在AE上,

,∴ ,   ∴ 點(diǎn)M的軌跡W是以E、F為焦點(diǎn)的橢圓,且半長(zhǎng)軸,半焦距,∴

∴ 點(diǎn)M的軌跡W的方程為().

(Ⅱ)設(shè),,∴    ∴  

由點(diǎn)P、Q均在橢圓W上,

  消去并整理,得,由,解得.  

16已知函數(shù)的定義域?yàn)?sub>,導(dǎo)數(shù)滿足0<<2  且,常數(shù)為方程的實(shí)數(shù)根,常數(shù)為方程的實(shí)數(shù)根.(Ⅰ)若對(duì)任意,存在,使等式成立.試問(wèn):方程有幾個(gè)實(shí)數(shù)根;(Ⅱ)求證:當(dāng)時(shí),總有成立;(Ⅲ)對(duì)任意,若滿足,求證:。

解:(I)假設(shè)方程有異于的實(shí)根m,即.則有成立 .因?yàn)?sub>,所以必有,但這與≠1矛盾,因此方程不存在異于c1的實(shí)數(shù)根.∴方程只有一個(gè)實(shí)數(shù)根.

(II)令,∴函數(shù)為減函數(shù).又,

∴當(dāng)時(shí),,即成立.

(III)不妨設(shè)為增函數(shù),即.又,∴函數(shù)為減函數(shù)即,即,

試題詳情

14.已知函數(shù)f(x)=x3+ax2+bx+c關(guān)于點(diǎn)(1,1)成中心對(duì)稱,且f '(1)=0.(Ⅰ)求函數(shù)f(x)的表達(dá)式;

 (Ⅱ)設(shè)數(shù)列{an}滿足條件:a1∈(1,2),an+1=f (an) 求證:(a1 a2)·(a3-1)+(a2 a3)·(a4-1)+…+(an an+1)·(an+2-1)<1

解:(Ⅰ)由f(x)=x3+ax2+bx+c關(guān)于點(diǎn)(1,1)成中心對(duì)稱,所以x3+ax2+bx+c+(2-x)3+a(2-x)2+b(2-x)+c=2      

對(duì)一切實(shí)數(shù)x恒成立.得:a=-3,b+c=3,對(duì)由f '(1)=0,得b=3,c=0,故所求的表達(dá)式為:f(x)= x3-3x2+3x(Ⅱ) an+1=f (an)= an 3-3 an 2+3 an   (1)令bn=an-1,0<bn<1,由代入(1)得:bn+1=,bn=

∴ 1>bn bn+1 >0 (a1a2)·(a3-1)+(a2a3)·(a4-1)+…+(anan+1)·(an+2-1)=

=b1-bn+1b1<1。          

試題詳情

13.定義在N*上的函數(shù)滿足:f(0) = 2,f(1) = 3,且

(Ⅰ)求f(n)(nÎN*);(Ⅱ)求

解(Ⅰ)由題意:,所以有:,又,所以,即

(Ⅱ)

試題詳情


同步練習(xí)冊(cè)答案