題目列表(包括答案和解析)
5.在中,,則等于┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄( )
A. B. C. D.
4.若定義在區(qū)間內(nèi)的函數(shù)滿足,則實(shí)數(shù)的取值范圍為( )
A. B. C. D.
3.已知函數(shù),那么 的值為┄┄┄┄┄┄┄┄┄┄┄┄┄┄( )
A.9 B. C. D.
2.條件,條件,則是的┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄( )
A.充分但不必要條件 B.必要但不充分條件
C.充分且必要條件 D.既不充分也不必要條件
1.已知,則集合中元素的個(gè)數(shù)是┄┄( )
A. B. C. D.不確定
18.已知△ABC中,三個(gè)內(nèi)角是A、B、C的對(duì)邊分別是a、b、c,其中c=10,且
(I)求證:△ABC是直角三角形;(II)設(shè)圓O過(guò)A、B、C三點(diǎn),點(diǎn)P位于劣弧AC上,∠PAB=60°,.求四邊形ABCP的面積.
解:(Ⅰ)證明:根據(jù)正弦定理得,
整理為,sinAcosA=sinBcosB,即sin2A=sin2B.
∴2A=2B或2A+2B= ∴.
∴舍去A=B. ∴即.故△ABC是直角三角形.
(Ⅱ)解:由(1)可得:a=6,b=8.在Rt△ACB中,
∴ ==
連結(jié)PB,在Rt△APB中,AP=AB·cos∠PAB=5.
∴四邊形ABCP的面積=24+=18+.
19已知集合.(1)求;(2)若以為首項(xiàng),為公比的等比數(shù)列前項(xiàng)和記為,對(duì)于任意的,均有,求的取值范圍.
[解析](1)由得
當(dāng)時(shí),.當(dāng)時(shí), ,當(dāng)時(shí),.綜上,時(shí),;時(shí),;當(dāng)時(shí), .
(2)當(dāng)時(shí),.而,故時(shí),不存在滿足條件的;
當(dāng)時(shí),,而是關(guān)于的增函數(shù),所以隨的增大而增大,當(dāng)且無(wú)限接近時(shí),對(duì)任意的,,只須滿足 解得. 當(dāng)時(shí),.顯然,故不存在實(shí)數(shù)滿足條件. 當(dāng)時(shí),.,適合.當(dāng)時(shí),.
,
,
,且故.
故只需 即 解得.綜上所述,的取值范圍是.
20設(shè)一動(dòng)點(diǎn)M在x軸正半軸上,過(guò)動(dòng)點(diǎn)M與定點(diǎn)的直線交y=x(x>0)于點(diǎn)Q,動(dòng)點(diǎn)M在什么位置時(shí),有最大值,并求出這個(gè)最大值.
[解析] 設(shè),要它與相交,則.
令,令,得. ∴.
∴于是.由,∴.而當(dāng)l的方程為x=2時(shí),u=2, ∴對(duì)應(yīng)得k=-2, .
不管什么時(shí)候,自己才是自己的天使,要笑著去面對(duì)生活!記住陽(yáng)光總在風(fēng)雨后,高考過(guò)后,你的天空會(huì)是另一番的精彩!
17.設(shè)無(wú)窮數(shù)列{an}具有以下性質(zhì):①a1=1;②當(dāng)(Ⅰ)請(qǐng)給出一個(gè)具有這種性質(zhì)的無(wú)窮數(shù)列,使得不等式 對(duì)于任意的都成立,并對(duì)你給出的結(jié)果進(jìn)行驗(yàn)證(或證明);(Ⅱ)若,其中,且記數(shù)列{bn}的前n項(xiàng)和Bn,證明:
解:(Ⅰ)令,則無(wú)窮數(shù)列{an}可由a1 = 1,給出.
顯然,該數(shù)列滿足,且
(Ⅱ) 又
15.已知O為坐標(biāo)原點(diǎn),點(diǎn)E、F的坐標(biāo)分別為(-1,0)、(1,0),動(dòng)點(diǎn)A、M、N滿足(),,,.(Ⅰ)求點(diǎn)M的軌跡W的方程;(Ⅱ)點(diǎn)在軌跡W上,直線PF交軌跡W于點(diǎn)Q,且,若,求實(shí)數(shù)的范圍.
解:(Ⅰ)∵,,∴ MN垂直平分AF.又,∴ 點(diǎn)M在AE上,
∴ ,,∴ , ∴ 點(diǎn)M的軌跡W是以E、F為焦點(diǎn)的橢圓,且半長(zhǎng)軸,半焦距,∴ .
∴ 點(diǎn)M的軌跡W的方程為().
(Ⅱ)設(shè)∵ ,,∴ ∴
由點(diǎn)P、Q均在橢圓W上,
∴ 消去并整理,得,由及,解得.
16已知函數(shù)的定義域?yàn)?sub>,導(dǎo)數(shù)滿足0<<2 且,常數(shù)為方程的實(shí)數(shù)根,常數(shù)為方程的實(shí)數(shù)根.(Ⅰ)若對(duì)任意,存在,使等式成立.試問(wèn):方程有幾個(gè)實(shí)數(shù)根;(Ⅱ)求證:當(dāng)時(shí),總有成立;(Ⅲ)對(duì)任意,若滿足,求證:。
解:(I)假設(shè)方程有異于的實(shí)根m,即.則有成立 .因?yàn)?sub>,所以必有,但這與≠1矛盾,因此方程不存在異于c1的實(shí)數(shù)根.∴方程只有一個(gè)實(shí)數(shù)根.
(II)令,∴函數(shù)為減函數(shù).又,
∴當(dāng)時(shí),,即成立.
(III)不妨設(shè),為增函數(shù),即.又,∴函數(shù)為減函數(shù)即.,即.,.
14.已知函數(shù)f(x)=x3+ax2+bx+c關(guān)于點(diǎn)(1,1)成中心對(duì)稱,且f '(1)=0.(Ⅰ)求函數(shù)f(x)的表達(dá)式;
(Ⅱ)設(shè)數(shù)列{an}滿足條件:a1∈(1,2),an+1=f (an) 求證:(a1- a2)·(a3-1)+(a2- a3)·(a4-1)+…+(an- an+1)·(an+2-1)<1
解:(Ⅰ)由f(x)=x3+ax2+bx+c關(guān)于點(diǎn)(1,1)成中心對(duì)稱,所以x3+ax2+bx+c+(2-x)3+a(2-x)2+b(2-x)+c=2
對(duì)一切實(shí)數(shù)x恒成立.得:a=-3,b+c=3,對(duì)由f '(1)=0,得b=3,c=0,故所求的表達(dá)式為:f(x)= x3-3x2+3x.(Ⅱ) an+1=f (an)= an 3-3 an 2+3 an (1)令bn=an-1,0<bn<1,由代入(1)得:bn+1=,bn=,
∴ 1>bn >bn+1 >0 (a1-a2)·(a3-1)+(a2-a3)·(a4-1)+…+(an-an+1)·(an+2-1)=
<=b1-bn+1<b1<1。
13.定義在N*上的函數(shù)滿足:f(0) = 2,f(1) = 3,且.
(Ⅰ)求f(n)(nÎN*);(Ⅱ)求.
解(Ⅰ)由題意:,所以有:,又,所以,即故.
(Ⅱ).
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com