如圖9, 已知拋物線與軸交于A (-4,0) 和B(1,0)兩點,與軸交于C點.
(1)求此拋物線的解析式;
(2)設(shè)E是線段AB上的動點,作EF//AC交BC于F,連接CE,當△CEF的面積是△BEF面積的2倍時,求E點的坐標;
(3)若P為拋物線上A、C兩點間的一個動點,過P作軸的平行線,交AC于Q,當P點運動到什么位置時,線段PQ的值最大,并求此時P點的坐標.
科目:初中數(shù)學(xué) 來源: 題型:
已知A,B,C為⊙O上相鄰的三個六等分點,點E在劣弧AC上(不與A,B,C重合),EF
為⊙O的直徑,將⊙O沿EF折疊,使點A與A′重合,點B與B′重合,連接EB′,EC,EA′。設(shè)EB′=b,EC=c,EA′=p。試探究b,c,p三者的數(shù)量關(guān)系。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,平面之間坐標系中,Rt△ABC的∠ACB=90º,∠CAB=30º,直角邊BC在x軸正半軸上滑動,點C的坐標為(t,0),直角邊AC=,經(jīng)過O,C兩點做拋物線(a為常數(shù),a>0),該拋物線與斜邊AB交于點E,直線OA:y2=kx(k為常數(shù),k>0)
(1)填空:用含t的代數(shù)式表示點A的坐標及k的值:A ,k= ;
(2)隨著三角板的滑動,當a=1時:
①請你驗證:拋物線的頂點在函數(shù)的圖象上;
②當三角板滑至點E為AB的中點時,求t的值。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,正方形ABCD的邊長是4,點P是邊CD上一點,連接PA,將線段PA繞點P逆時針旋轉(zhuǎn)90°得到線段PE,在邊AD延長線上取點F,使DF=DP,連接EF,CF路。
(1)求證:四邊形PCFE是平行四邊形;
(2)當點P在邊CD上運動時,四邊形PCFE的面積是否有最大值?若有,請求出面積的最大值及此時CP長;若沒有,請說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在平面直角坐標系xOy中,點P(x,y)是拋物線上的一個動點,拋物線的對稱軸與x軸交于點D,經(jīng)過點P的直線PE與y軸交于點E,是否存在△OPE與△OPD全等?若存在,請求出直線PE的解析式;若不存在,請說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖1,在Rt△ABC中,∠ACB=90°,AB=10,BC=6,扇形紙片DOE的頂點O與邊AB的中點重合,OD交BC于點F,OE經(jīng)過點C,且∠DOE=∠B.
(1)證明△COF是等腰三角形,并求出CF的長;
(2)將扇形紙片DOE繞點O逆時針旋轉(zhuǎn),OD,OE與邊AC分別交于點M,N(如圖2),當CM的長是多少時,△OMN與△BCO相似?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在平面直角坐標系中,O為坐標原點,拋物線與x軸相交于O、B,頂點為A,連接OA.
(1)求點A的坐標和∠AOB的度數(shù);
(2)若將拋物線向右平移4個單位,再向上平移2個單位,再向上翻轉(zhuǎn),得到拋物線m,其頂點為點C.連接OC和AC,把△AOC沿OA翻折得到四邊形ACOC′.試判斷其形狀,并說明理由;
(3)在(2)的情況下,判斷點C′是否在拋物線上,請說明理由;
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com