如圖,在平面直角坐標(biāo)系xOy中,點(diǎn)P(x,y)是拋物線上的一個(gè)動(dòng)點(diǎn),拋物線的對(duì)稱軸與x軸交于點(diǎn)D,經(jīng)過(guò)點(diǎn)P的直線PE與y軸交于點(diǎn)E,是否存在△OPE與△OPD全等?若存在,請(qǐng)求出直線PE的解析式;若不存在,請(qǐng)說(shuō)明理由。
解:存在。
∵,
∴拋物線的對(duì)稱軸為x=2。
∴OD=2。
如圖,若△OPE≌△OPD,則∠OPD=∠OPE,即點(diǎn)P在各象限的角平分線上,
當(dāng)P1(,),E1(0,)時(shí),由待定系數(shù)法可求P1E1的解析式為;
當(dāng)P2(,),E2(0,)時(shí),由待定系數(shù)法可求P2E2的解析式為。
綜上所述,直線PE的解析式為或或或。
【考點(diǎn)】二次函數(shù)綜合題,待定系數(shù)法的應(yīng)用,曲線上點(diǎn)的坐標(biāo)與方程的關(guān)系,全等三角形的判定,解一元二次方程,二次根式化簡(jiǎn),分類思想的應(yīng)用。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
已知,大正方形的邊長(zhǎng)為4,小正方形的邊長(zhǎng)為2,狀態(tài)如圖所示.大正方形固定不動(dòng),把小正方形以的速度向大正方形的內(nèi)部沿直線平移,設(shè)平移的時(shí)間為秒,兩個(gè)正方形重疊部分的面積為,完成下列問(wèn)題:
(1).用含的式子表示,要求畫出相應(yīng)的圖形,表明的范圍;
(2).當(dāng),求重疊部分的面積;
(3).當(dāng),求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,在平面直角坐標(biāo)系中,四邊形ABCO是梯形,其中A(4,0),B(3,),C(1,),動(dòng)點(diǎn)P從點(diǎn)A以每秒1個(gè)單位的速度向點(diǎn)O運(yùn)動(dòng),動(dòng)點(diǎn)Q也同時(shí)從點(diǎn)A沿A→B→ C→O的線路以每秒2個(gè)單位的速度向點(diǎn)O運(yùn)動(dòng),當(dāng)點(diǎn)P到達(dá)A點(diǎn)時(shí),點(diǎn)Q也隨之停止,設(shè)點(diǎn)P、Q運(yùn)動(dòng)的時(shí)間為t(秒)。求△OPQ的面積S與時(shí)間t的函數(shù)關(guān)系式。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖9, 已知拋物線與軸交于A (-4,0) 和B(1,0)兩點(diǎn),與軸交于C點(diǎn).
(1)求此拋物線的解析式;
(2)設(shè)E是線段AB上的動(dòng)點(diǎn),作EF//AC交BC于F,連接CE,當(dāng)△CEF的面積是△BEF面積的2倍時(shí),求E點(diǎn)的坐標(biāo);
(3)若P為拋物線上A、C兩點(diǎn)間的一個(gè)動(dòng)點(diǎn),過(guò)P作軸的平行線,交AC于Q,當(dāng)P點(diǎn)運(yùn)動(dòng)到什么位置時(shí),線段PQ的值最大,并求此時(shí)P點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,在等腰三角形ABC中,AB=AC,以底邊BC的垂直平分線和BC所在的直線建立平面直角坐標(biāo)系,拋物線經(jīng)過(guò)A、B兩點(diǎn)。若一條與y軸重合的直線l以每秒2個(gè)單位長(zhǎng)度的速度向右平移,分別交線段OA、CA和拋物線于點(diǎn)E、M和點(diǎn)P,連結(jié)PA、PB.設(shè)直線l移動(dòng)的時(shí)間為t(0<t<4)秒,求四邊形PBCA的面積S(面積單位)與t(秒)的函數(shù)關(guān)系式,并求出四邊形PBCA的最大面積。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,∠MON=90°,A、B分別是OM、ON上的點(diǎn),OB=4.點(diǎn)C是線段AB的中點(diǎn),將線段AC以點(diǎn)A為旋轉(zhuǎn)中心,沿順時(shí)針?lè)较蛐D(zhuǎn)90°,得到線段AD,過(guò)點(diǎn)B作ON的垂線.
(1)當(dāng)點(diǎn)D恰好落在垂線上時(shí),求OA的長(zhǎng);
(2)過(guò)點(diǎn)D作DE⊥OM于點(diǎn)E,將(1)問(wèn)中的△AOB以每秒2個(gè)單位的速度沿射線OM方向平移,記平移中的△AOB為△,當(dāng)點(diǎn)O′與點(diǎn)E重合時(shí)停止平移.設(shè)平移的時(shí)間為t秒,△與△DAE重疊部分的面積為S,請(qǐng)直接寫出S與t之間的函數(shù)關(guān)系式以及自變量t的取值范圍;
(3)在(2)問(wèn)的平移過(guò)程中,若與線段交于點(diǎn)P,連接,,,是否存在這樣的t,使△是等腰三角形?若存在,求出t的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
在平面直角坐標(biāo)系中,已知拋物線(a,c為常數(shù))的頂點(diǎn)為P,等腰直角三角形ABC的頂點(diǎn)A的坐標(biāo)為(0,﹣1),C的坐標(biāo)為(﹣4,3),直角頂點(diǎn)B在第二象限。
(1)如圖,若該拋物線過(guò)A,B兩點(diǎn),求該拋物線的函數(shù)表達(dá)式;
(2)平移(1)中的拋物線,使頂點(diǎn)P在直線AC上滑動(dòng),且與AC交于另一點(diǎn)Q,若點(diǎn)M在直線AC下方,且為平移前(1)中的拋物線上的點(diǎn),當(dāng)以M、P、Q三點(diǎn)為頂點(diǎn)的三角形是等腰直角三角形時(shí),求出所有符合條件的點(diǎn)M的坐標(biāo)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,已知:拋物線C1:,將拋物線C1向上平移m個(gè)單位(m>0)得拋物線C2,C2的頂點(diǎn)為G,與y軸交于M,點(diǎn)N是M關(guān)于x軸的對(duì)稱點(diǎn),點(diǎn)P()在直線MG上。問(wèn):當(dāng)m為何值時(shí),在拋物線C2上存在點(diǎn)Q,使得以M、N、P、Q為頂點(diǎn)的四邊形為平行四邊形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
探究與發(fā)現(xiàn):
探究一:我們知道,三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和.那么,三角形的一個(gè)內(nèi)角與它不相鄰的兩個(gè)外角的和之間存在何種數(shù)量關(guān)系呢?
已知:如圖,∠FDC與∠ECD分別為△ADC的兩個(gè)外角,
試探究∠A與∠FDC+∠ECD的數(shù)量關(guān)系.
探究二:三角形的一個(gè)內(nèi)角與另兩個(gè)內(nèi)角的平分線所夾的鈍角之間有何種關(guān)系?
已知:如圖,在△ADC中,DP、CP分別平分∠ADC和∠ACD,試探究∠P與∠A的數(shù)量關(guān)系.
探究三:若將△ADC改為任意四邊形ABCD呢?
已知:如圖,在四邊形ABCD中,DP、CP分別平分∠ADC和∠BCD,試?yán)蒙鲜鼋Y(jié)論探究∠P與∠A+∠B的數(shù)量關(guān)系.
探究四:若將上題中的四邊形ABCD改為六邊形ABCDEF呢?
請(qǐng)直接寫出∠P與∠A+∠B+∠E+∠F的數(shù)量關(guān)系: _______________________________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com