精英家教網 > 初中數學 > 題目詳情
10.四邊形ABCD內接于⊙O,AC為其中一條對角線,且S△ABC:S△ADC=AB:AD.
(1)如圖1,求證:BC=CD;
(2)如圖2:連接OC,交對角線BD于點E,若∠BAD=60°,求證:OE=EC;
(3)如圖3,在(2)的條件下,過點D作DF⊥AC于點F,連接FO并延長FO,交AB邊于點G,若FG⊥AB,OC=$\sqrt{21}$,求△OFC的面積.

分析 (1)首先利用已知得出CL=CK,再結合全等三角形的判定方法得出△CKB≌△CLD(AAS),進而得出答案;
(2)首先得出△OBC是等邊三角形,進而得出答案;
(3)利用已知首先得出△AMD是等邊三角形,進而得出BG,EF的長,再利用S△OEF=$\frac{1}{2}$OF•EF進而得出答案.

解答 (1)證明:過C作CK⊥AB于點K,過C作CL⊥AD于點L,
∴S△ABC=$\frac{1}{2}$AB•CK,S△ADC=$\frac{1}{2}$AD•CL,
∵S△ABC:S△ADC=AB:AD.
∴CL=CK,
∵∠B+∠ADC=180°,∠CDL+∠ADC=180°,
∴∠B=∠CDL,
∵∠CKB=∠L=90°,
在△CKB和△CLD中
$\left\{\begin{array}{l}{∠B=∠CDL}\\{∠BKC=∠CLD}\\{KC=LC}\end{array}\right.$,
∴△CKB≌△CLD(AAS),
∴BC=CD.

(2)證明:如圖2,連接OB、OD,
∵BC=CD,
∴∠BOC=∠DOC
∵OB=OD,
∴OE⊥BD,
∵∠BAD=60°,
∴∠BOC=∠DOC=60°,
∴△OBC是等邊三角形,
∴OB=BC,
∴OE=EC;

(3)解:如圖3,延長DF交AB于點M,連接OB,
∵∠BAD=60°,
∴∠BAC=∠CAD=30°,
∵AF⊥DF,
∴∠AFM=∠AFD=90°,
∴∠AMD=∠ADM=60°,
∴△AMD是等邊三角形,
設MG=a,則MF=2a,AM=AD=MD=4a,GF=$\sqrt{3}$a,
∴AG=BG=3a,∴BM=2a
∵E、F分別是BD、MD中點,∴EF=a,EF∥AB
過B作BN⊥MD,則MN=a,BN=$\sqrt{3}$a,∴DN=5a,
∵BD=$\sqrt{3}$OC,∴BD=3$\sqrt{7}$
在Rt△BND中,($\sqrt{3}$a)2+(5a)2=(3$\sqrt{7}$)2
解得a=$\frac{3}{2}$,
∴BG=$\frac{9}{2}$,EF=$\frac{3}{2}$,
在Rt△OGB中,OG=$\frac{\sqrt{3}}{2}$,
∴OF=$\sqrt{3}$,
∵EF∥AB,
∴∠EFO=∠AGF=90°
∴S△OEF=$\frac{1}{2}$OF•EF=$\frac{1}{2}$×$\sqrt{3}$×$\frac{3}{2}$=$\frac{3\sqrt{3}}{4}$
∵OE=EC,
∴S△OFC=2 S△OEF=$\frac{3\sqrt{3}}{2}$.

點評 此題主要考查了圓的綜合以及全等三角形的判定與性質和等邊三角形的判定與性質等知識,正確得出MN的長是解題關鍵.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:解答題

20.閱讀下列材料:
解方程組:$\left\{\begin{array}{l}{x-y-1=0①}\\{4(x-y)-y=5②}\end{array}\right.$
解:由①得
 x-y=1  ③,
將③代入②,得
4×1-y=5,
解這個一元一次方程,得
y=-1.
從而求得$\left\{\begin{array}{l}{x=0}\\{y=-1}\end{array}\right.$.
這種思想被稱為“整體思想”.請用“整體思想”解決下面問題:
(1)解方程組:$\left\{\begin{array}{l}{2x-3y-2=0}\\{\frac{2x-3y+5}{7}+2y=9}\end{array}\right.$;
(2)在(1)的條件下,若x,y是△ABC兩條邊的長,且第三邊的長是奇數,求△ABC的周長.

查看答案和解析>>

科目:初中數學 來源: 題型:選擇題

1.初三(9)班體育委員用劃記法統(tǒng)計本班40名同學投擲實心球的成績,結果如圖所示:則這40名同學投擲實心球的成績的眾數和中位數分別是( 。
成績(分)678910
人數




A.8,8B.8,8.5C.9,8D.9,8.5

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

18.AB為⊙O的直徑,點P在⊙O外,PC、PD分別切⊙O于點C、D,連接OC、OD.
(1)如圖1,求證:∠P+∠COD=180°;
(2)如圖2,連接AD、BC、AD交BC于點E,求證:∠AEC=$\frac{1}{2}$∠P;
(3)如圖3,在(2)的條件下,延長PC、交BA的延長線于點H,設OC與AD的交點為F,OD與BC的交點為G,若PC+PD=AB,CH=2CF,OF=4,求線段OG的長.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

5.如圖所示,正方形網格中,△ABC為格點三角形(即三角形的頂點都在格點上):
①把△ABC沿BA方向平移,請在網格中畫出當點A移動到點A1時的△A1B1C1
②把△A1B1C1繞點A1按逆時針方向旋轉90°后得到△A2B2C2,如果網格中小正方形的邊長為1,求點B1旋轉到B2的路徑長.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

15.已知△ABC內接于⊙O,D為BC弦的中點,連接OB、OD.
(1)如圖1,求證:∠BOD=∠BAC;
(2)如圖2,過點B作BE⊥AC于點F,連接AF,求證AF=2OD;
(3)如圖3,在(2)的條件下,連接DE并延長,交AF弦于點G,連接OE并延長,交AF的延長線于點H,若AG=4FG,BC=4EG,OE=5,求線段FH的長.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

2.“節(jié)約用水、人人有責”,某班學生利用課余時間對金輝小區(qū)300戶居民的用水情況進行了統(tǒng)計,發(fā)現(xiàn)5月份各戶居民的用水量比4月份有所下降,并且將5月份各戶居民的節(jié)水量統(tǒng)計整理成如圖所示的統(tǒng)計圖表
節(jié)水量/立方米11.52.53
戶數/戶5080a70
(1)寫出統(tǒng)計表中a的值和扇形統(tǒng)計圖中2.5立方米對應扇形的圓心角度數.
(2)根據題意,將5月份各居民的節(jié)水量的條形統(tǒng)計圖補充完整.
(3)求該小區(qū)300戶居民5月份平均每戶節(jié)約用水量,若用每立方米水需4元水費,請你估算每戶居民1年可節(jié)約多少元錢的水費?

查看答案和解析>>

科目:初中數學 來源: 題型:填空題

19.百米決賽共設1,2,3,4四條跑道,選手隨機抽簽決定各自的跑道,若小亮首先抽簽,則抽到1號跑道的概率是$\frac{1}{4}$.

查看答案和解析>>

科目:初中數學 來源: 題型:選擇題

20.某校九年級(1)班全體學生2016年初中畢業(yè)體育考試的成績統(tǒng)計如表:
成績(分)25293234353840
人數(人)2437976
根據上表中的信息判斷,下列結論中錯誤的是(  )
A.該班一共有38名同學
B.該班學生這次考試成績的眾數是35分
C.該班學生這次考試成績的中位數是35分
D.該班學生這次考試成績的平均數是35分

查看答案和解析>>

同步練習冊答案