【題目】如圖1,等腰RtABC和等腰RtDEF中,∠BCA=FDE=90°,AB=4,EF=8.點A、C、D、E在一條直線上,等腰RtDEF靜止不動,初始時刻,CD重合,之后等腰RtABCC出發(fā),沿射線CE方向以每秒1個單位長度的速度勻速運動,當A點與E點重合時,停止運動.設運動時間為t秒(t≥0).

(1)直接寫出線段AC、DE的長度;

(2)在等腰RtABC的運動過程中,設等腰RtABC和等腰RtDEF重疊部分的面積為S,請直接寫出St的函數(shù)關系式和相應的自變量t的取值范圍;

(3)在整個運動過程中,當線段AB與線段EF相交時,設交點為點M,點O為線段CE的中點;是否存在這樣的t,使點E、O、M三點構(gòu)成的三角形是等腰三角形?若存在,求出對應的t的值;若不存在,請說明理由.

【答案】(1)AC=4,DE=8,;(2)見解析;(3)見解析.

【解析】

(1)利用運動即可得出結(jié)論;

(2)利用面積的和差和特殊圖形的面積公式分三種情況討論計算即可;

(3)找出MOE是等腰三角形時的位置即可得出結(jié)論.

(1)在RtABC中,

AC=BC,AB=4

AC=BC=4,

同理:DE=DF=8;

(2)當0<t≤4時,如圖1,設ABBD的交點為G,

由運動知,CD=t,

DG=AD=4﹣t,

S=(DG+BC)×CD=(4﹣t+4)×t=﹣t2+4t,

4<t≤8時,

如圖3,記ABEF的交點為P,

由運動知,CE=8﹣t,

CQ=8﹣t,

BQ=4﹣(8﹣t)=t﹣4,

S=SABC﹣SPBQ=×4×4﹣(t﹣4)×(t﹣4)=8﹣(t﹣4)2,

8<t<12時,如圖5,

ABEF的交點為N',

由運動知,AC=4﹣(t﹣8)=t﹣4,

S=SAEN'=(t﹣4)×(t﹣4)=(t﹣4)2;

(3)當∠MOE=90°時,如圖6,

即:點CO重合,

t=4,

當∠OME=90°時,如圖7,

AO重合,

t=8,

即:MOE是等腰三角形時,t=48.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】(操作發(fā)現(xiàn))

(1)如圖1,△ABC為等邊三角形,先將三角板中的60°角與∠ACB重合,再將三角板繞點C按順時針方向旋轉(zhuǎn)(旋轉(zhuǎn)角大于0°且小于30°),旋轉(zhuǎn)后三角板的一直角邊與AB交于點D,在三角板斜邊上取一點F,使CF=CD,線段AB上取點E,使∠DCE=30°,連接AF,EF.

①求∠EAF的度數(shù);

②DEEF相等嗎?請說明理由;

(類比探究)

(2)如圖2,△ABC為等腰直角三角形,∠ACB=90°,先將三角板的90°角與∠ACB重合,再將三角板繞點C按順時針方向旋轉(zhuǎn)(旋轉(zhuǎn)角大于0°且小于45°),旋轉(zhuǎn)后三角板的一直角邊與AB交于點D,在三角板另一直角邊上取一點F,使CF=CD,線段AB上取點E,使∠DCE=45°,連接AF,EF.

①∠EAF=

②當AE=1,ED=2時,求DB的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,∠C=90°,AB=10cm,BC=6cm,若動點P從點C開始,按C→A→B→C的路徑運動,且速度為每秒1cm,設出發(fā)的時間為t秒.

(1)問t為何值時,PA=PB?

(2)問t為何值時,△BCP為等腰三角形?

(3)另有一點Q,從點C開始,按C→B→A→C的路徑運動,且速度為每秒2cm,若P、Q兩點同時出發(fā),當P、Q中有一點到達終點時,另一點也停止運動.當t為何值時,直線PQ△ABC的周長分成相等的兩部分?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲隊修路500米與乙隊修路800米所用天數(shù)相同,乙隊比甲隊每天多修30米,問甲隊每天修路多少米?
解:設甲隊每天修路x米,用含x的代表式完成表格:

甲隊每天修路長度(單位:米)

乙隊每天修路長度(單位:米)

甲隊修500米所用天數(shù)(單位:天)

乙隊修800米所用天數(shù)(單位:天)

x

關系式:甲隊修500米所用天數(shù)=乙隊修800米所用天數(shù)
根據(jù)關系式列方程為:
解得:
檢驗:
答:

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了貫徹落實健康第一的指導思想,促進學生全面發(fā)展,國家每年都要對中學生進行一次體能測試,測試結(jié)果分“優(yōu)秀”、“良好”、“及格”、“不及格”四個等級,某學校從七年級學生中隨機抽取部分學生的體能測試結(jié)果進行分析,并根據(jù)收集的數(shù)據(jù)繪制了兩幅不完整的統(tǒng)計圖,請根據(jù)這兩幅統(tǒng)計圖中的信息回答下列問題

(1)本次抽樣調(diào)查共抽取多少名學生?
(2)補全條形統(tǒng)計圖.
(3)在扇形統(tǒng)計圖中,求測試結(jié)果為“良好”等級所對應圓心角的度數(shù).
(4)若該學校七年級共有600名學生,請你估計該學校七年級學生中測試結(jié)果為“不及格”等級的學生有多少名?
(5)請你對“不及格”等級的同學提一個友善的建議(一句話即可).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小穎同學在手工制作中,把一個邊長為12cm的等邊三角形紙片貼到一個圓形的紙片上,若三角形的三個頂點恰好都在這個圓上,則圓的半徑為(
A.2 cm
B.4 cm
C.6 cm
D.8 cm

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】教室里有4排日光燈,每排燈各由一個開關控制,但燈的排數(shù)序號與開關序號不一定對應,其中控制第二排燈的開關已壞(閉合開關時燈也不亮).
(1)將4個開關都閉合時,教室里所有燈都亮起的概率是;
(2)在4個開關都閉合的情況下,不知情的雷老師準備做光學實驗,由于燈光太強,他需要關掉部分燈,于是隨機將4個開關中的2個斷開,請用列表或畫樹狀圖的方法,求恰好關掉第一排與第三排燈的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】解答
(1)閱讀理解:

如圖①,在△ABC中,若AB=10,AC=6,求BC邊上的中線AD的取值范圍.
解決此問題可以用如下方法:延長AD到點E使DE=AD,再連接BE(或?qū)ⅰ鰽CD繞著點D逆時針旋轉(zhuǎn)180°得到△EBD),把AB、AC,2AD集中在△ABE中,利用三角形三邊的關系即可判斷.
中線AD的取值范圍是;
(2)問題解決:
如圖②,在△ABC中,D是BC邊上的中點,DE⊥DF于點D,DE交AB于點E,DF交AC于點F,連接EF,求證:BE+CF>EF;
(3)問題拓展:
如圖③,在四邊形ABCD中,∠B+∠D=180°,CB=CD,∠BCD=140°,以C為頂點作一個70°角,角的兩邊分別交AB,AD于E、F兩點,連接EF,探索線段BE,DF,EF之間的數(shù)量關系,并加以證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=ax2+bx﹣4(a≠0)與x軸交于A(4,0)、B(﹣1,0)兩點,過點A的直線y=﹣x+4交拋物線于點C.

(1)求此拋物線的解析式;
(2)在直線AC上有一動點E,當點E在某個位置時,使△BDE的周長最小,求此時E點坐標;
(3)當動點E在直線AC與拋物線圍成的封閉線A→C→B→D→A上運動時,是否存在使△BDE為直角三角形的情況,若存在,請直接寫出符合要求的E點的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案