分析 延長BA′交DE于M,作MN⊥C′D于N,由矩形的性質(zhì)得出∠A=∠C=90°,AD=BC,AB=CD,由折疊的性質(zhì)得出∠C′=∠C=90°,∠A′=∠A=90°,CE=C′E,AB=A′B,∠CDE=∠C′DE,∠CED=∠C′ED,∠ABF=∠A′BF,∠AFB=∠A′FB,由SAS證明△ABF≌△CDE(SAS),得出∠ABF=∠CDE,∠CED=∠AFB,由ASA證明△BEG≌△DFH,得出∠BGE=∠DHF,證出四邊形MNC′G是矩形,得出MN=C′G=1,∠GMN=90°,設(shè)EG=3x,BG=4x,則BE=5x,CE=C′E=3x+1,CD=AB=A′B=4x+6,由三角函數(shù)求出DN=$\frac{3}{4}$,由勾股定理得出DM=$\frac{5}{4}$,再由三角函數(shù)得出方程,解方程求出x=2,得出AB=CD=14,AD=BC=17,即可得出矩形ABCD的周長.
解答 解:延長BA′交DE于M,作MN⊥C′D于N,如圖所示:
∵四邊形ABCD是矩形,
∴∠A=∠C=90°,AD=BC,AB=CD,
由折疊的性質(zhì)得:∠C′=∠C=90°,∠A′=∠A=90°,CE=C′E,AB=A′B,∠CDE=∠C′DE,∠CED=∠C′ED,∠ABF=∠A′BF,∠AFB=∠A′FB,
在△ABF和△CDE中,
$\left\{\begin{array}{l}{AB=CD}\\{∠A=∠C}\\{AF=CE}\end{array}\right.$,
∴△ABF≌△CDE(SAS),
∴∠ABF=∠CDE,∠CED=∠AFB,
∴∠BEG=∠DFH,∠EBG=∠FDH,
∵CE=AF,
∴BE=DF,
在△BEG和△DFH中,
$\left\{\begin{array}{l}{∠BEG=∠DFH}\\{BE=DF}\\{∠EBG=∠FDH}\end{array}\right.$,
∴△BEG≌△DFH(ASA),
∴∠BGE=∠DHF,
∵∠A′GC′=∠BGE,∠A′HC′=∠DHF,
∴∠BGE=∠DHF=∠A′HC′=∠A′GC′=(360°-90°-90°)÷2=90°,
∴四邊形MNC′G是矩形,
∴MN=C′G=1,∠GMN=90°,
∴∠DNM=∠EBG,
∵tan∠EBG=$\frac{3}{4}$,
∴設(shè)EG=3x,BG=4x,則BE=5x,
∴CE=C′E=3x+1,CD=AB=A′B=4x+6,
∵tan∠DMN=$\frac{DN}{MN}$=tan∠EBG=$\frac{3}{4}$,MN=1,
∴DN=$\frac{3}{4}$,
∴DM=$\frac{5}{4}$,
∵tan∠EBG=$\frac{CM}{BC}$=$\frac{3}{4}$,
即$\frac{4x+6-\frac{5}{4}}{3x+1+5x}$,解得:x=2,
∴AB=CD=14,AD=BC=17,
∴矩形ABCD的周長=2×(14+17)=62.
故答案為:62.
點(diǎn)評(píng) 本題考查了矩形的性質(zhì)、翻折變換的性質(zhì)、全等三角形的判定與性質(zhì)、勾股定理、三角函數(shù)等知識(shí);本題綜合性強(qiáng),難度較大,證明三角形全等是解決問題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 可能是正方形 | B. | 一定是平行四邊形 | ||
C. | 可能是菱形 | D. | 可能是梯形 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 65° | B. | 50° | C. | 130° | D. | 100° |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | x=a,x=b都不是該方程的解 | |
B. | x=a是該方程的解,x=b不是該方程的解 | |
C. | x=b是該方程的解,x=a不是該方程的解 | |
D. | x=a,x=b都是該方程的解 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com